1
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
2
|
Zeng X, Peng Y, Wang Y, Kang K. C1q/tumor necrosis factor-related protein-3 (CTRP3) activated by forkhead box O4 (FOXO4) down-regulation protects retinal pericytes against high glucose-induced oxidative damage through nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling. Bioengineered 2022; 13:6080-6091. [PMID: 35196182 PMCID: PMC8974204 DOI: 10.1080/21655979.2022.2031413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of blindness among diabetes mellitus patients. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine which is associated with multiple types of metabolism. Nevertheless, little is known about the role of CTRP3 in high glucose (HG)-induced human retinal pericytes (HRPs). This study set out to assess the influence of CTRP3 on HG-induced HRPs and elucidate the latent regulatory mechanism. RT-qPCR and Western blot were to analyze CTRP3 and forkhead box O4 (FOXO4) expression. Western blot was also utilized to detect the protein levels of apoptosis-related factors and nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling-related factors. CCK-8 was to measure cell proliferation while TUNEL assay was to estimate cell apoptosis. Levels of oxidative stress biomarkers including manganese (MnSOD), catalase (CAT) and malonedialdehyde (MDA) were evaluated by the corresponding kits. JASPAR database, ChIP and luciferase reporter assay were to verify the interaction between FOXO4 and CTRP3 promoter. The experimental results uncovered that CTRP3 expression was decreased in HG-stimulated HRPs. Moreover, CTRP3 overexpression strengthened the viability while abrogated the apoptosis and oxidative stress of HG-induced HRPs. Furthermore. FOXO4 was up-regulated in HG-induced HRPs. Besides, FOXO4 bond to CTRP3 promoter and inhibited CTRP3 transcription to modulate the Nrf2/NF-κB signaling pathway. FOXO4 up-regulation reversed the influence of CTRP3 elevation on the proliferation, apoptosis and oxidative stress of HG-induced HRPs. To be summarized, CTRP3 negatively modulated by FOXO4 prevented HG-induced oxidative damage in DR via modulation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- XiuYa Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - YouYuan Peng
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - YanFeng Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - KeMing Kang
- Department of Ophthalmic Fundus Disease, Xiamen Eye Center of Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Antioxidants-Related Superoxide Dismutase ( SOD), Catalase ( CAT), Glutathione Peroxidase ( GPX), Glutathione-S-Transferase ( GST), and Nitric Oxide Synthase ( NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants (Basel) 2021; 10:antiox10040595. [PMID: 33924357 PMCID: PMC8070436 DOI: 10.3390/antiox10040595] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress and antioxidants play an important role in obesity etiopathology. Genetic variants, including single nucleotide polymorphisms (SNPs) of the antioxidant-related genes, may impact disease risk in several populations. This preliminary study aimed to explore the association of 12 SNPs related to superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) genes with obesity susceptibility in a Saudi population. A total of 384 unrelated participants, including 154 (40.1%) obese individuals, were enrolled. TaqMan OpenArray Genotyping assays were used. Six SNPs were significantly more prevalent in obese cohorts: (1) GSTM1 rs1056806*C/T; (2) SOD1 rs2234694*A; (3) SOD2 rs4880*G; (4) SOD3 rs2536512*A; (5) GPX1 rs1800668*A; (6) NOS3 rs1799983*G. Four SNPs were associated with higher obesity risk under heterozygote and dominant models for GSTM1 rs1056806 (C/T), homozygote model for SOD2 rs4880 (A/G), and homozygote and recessive models for GPX1 rs1800668 (A/G). In contrast, SOD3 rs2536512 (A/G) were less likely to be obese under heterozygote and dominant models. The CGAG, CAAA, TGGG, and CGAG combined genotypes showed a higher risk of obesity. In conclusion, the present results suggest that oxidative-stress-related genetic determinants could significantly associate with obesity risk in the study population.
Collapse
|
4
|
Lewandowski Ł, Urbanowicz I, Kepinska M, Milnerowicz H. Concentration/activity of superoxide dismutase isozymes and the pro-/antioxidative status, in context of type 2 diabetes and selected single nucleotide polymorphisms (genes: INS, SOD1, SOD2, SOD3) - Preliminary findings. Biomed Pharmacother 2021; 137:111396. [PMID: 33761612 DOI: 10.1016/j.biopha.2021.111396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
The alterations in concentration/activity of superoxide dismutase isozymes in the context of type 2 diabetes or obesity are well-described. Moreover, many hereditary factors, including single-nucleotide polymorphisms (SNPs) of genes for coding insulin, insulin receptors, or insulin receptor substrates (INS, INSR, IRS1, IRS2) or superoxide dismutase isozymes (SOD1, SOD2, SOD3), have been linked with the incidence of obesity and diabetes. However, the underlying changes in the plasma concentration/activity of superoxide dismutase isozymes and their potential connection with the said hereditary factors remain unexplored. Previously, we have observed that the plasma concentration/activity of superoxide dismutase isozymes differs in the context of obesity and/or rs2234694 (SOD1) and rs4880 (SOD2) and that the concentrations of SOD1, SOD2, SOD3 are correlated with each other. Intersexual variability of SOD1 concentration was detected regardless of obesity. In this study, the variability of concentration/activity of superoxide dismutase isozymes in plasma is considered in the context of type 2 diabetes and/or SNPs: rs2234694 (SOD1), rs5746105 (SOD2), rs4880 (SOD2), rs927450 (SOD2), rs8192287 (SOD3). Genotypic variability of SNP rs3842729 (INS), previously studied in the context of insulin-dependent diabetes, is investigated in terms of selected clinical parameters associated with type 2 diabetes. This study revealed higher SOD1 concentration in diabetic men compared to women, and extremely high SOD1 concentration, higher total superoxide dismutase, and copper-zinc superoxide dismutase activity, and lower superoxide dismutase and copper-zinc superoxide dismutase activity (when adjusted for the concentration of SODs) in the diabetic group regardless of sex. Multiple logistic regression, applied to explore possible links between the studied SNPs and other factors with the odds of type 2 diabetes or obesity, revealed that the genotypic variability of rs4880 (SOD2) could affect these odds, supporting the findings of several other studies.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland.
| | - Iwona Urbanowicz
- Department of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| |
Collapse
|
5
|
Quantile-specific heritability of sibling leptin concentrations and its implications for gene-environment interactions. Sci Rep 2020; 10:22152. [PMID: 33335207 PMCID: PMC7747738 DOI: 10.1038/s41598-020-79116-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
"Quantile-dependent expressivity" occurs when the effect size of a genetic variant depends upon whether the phenotype (e.g., leptin) is high or low relative to its distribution. Leptin concentrations are strongly related to adiposity, whose heritability is quantile dependent. Whether inheritance of leptin concentrations is quantile dependent, and whether this explains the greater heritability in women than men in accordance with their greater adiposity, and explains other gene-environment interactions, remains to be determined. Therefore, leptin and leptin receptor concentrations from 3068 siblings in 1133 sibships from the Framingham Heart Study Third Generation Cohort were analyzed. Free leptin index (FLI) was calculated as the ratio of leptin to soluble leptin receptor concentrations. Full-sib (βFS) regression slopes were robustly estimated by quantile regression with nonparametric significance assigned from 1000 bootstrap samples. The analyses showed βFS increased significantly with increasing percentiles of the offspring's age- and sex-adjusted leptin distribution (Plinear = 0.0001), which was accelerated at the higher concentrations (Pquadratic = 0.0003). βFS at the 90th percentile (0.418 ± 0.066) was 4.7-fold greater than at the 10th percentile (0.089 ± 0.032, Pdifference = 3.6 × 10-6). Consistent with quantile-dependent expressivity, the βFS was greater in female sibs, which was attributable to their higher leptin concentrations. Reported gene-environment interactions involving adiposity and LEP, LEPR, MnSOD, PPARγ, PPARγ2, and IRS-1 polymorphisms were consistent with quantile-dependent expressivity of leptin concentrations. βFS for leptin receptor concentrations and free leptin index also increased significantly with increasing percentiles of their distributions (Plinear = 0.04 and Plinear = 8.5 × 10-6, respectively). In conclusion, inherited genetic and shared environmental effects on leptin concentrations were quantile dependent, which likely explains male-female differences in heritability and some gene-environment interactions.
Collapse
|
6
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
7
|
Lewandowski Ł, Kepinska M, Milnerowicz H. Alterations in Concentration/Activity of Superoxide Dismutases in Context of Obesity and Selected Single Nucleotide Polymorphisms in Genes: SOD1, SOD2, SOD3. Int J Mol Sci 2020; 21:ijms21145069. [PMID: 32709094 PMCID: PMC7404310 DOI: 10.3390/ijms21145069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Little is known about the contribution of each of the three superoxide dismutase isozymes (SODs) to the total SOD activity in extracellular fluids. This study was aimed to investigate the alterations in concentration/activity of (SODs) in plasma, in context of sex, obesity, exposition to cigarette smoke, and genotypic variability of five selected single nucleotide polymorphisms (SNPs) in genes SOD1, SOD2, SOD3. Men showed higher SOD1 concentration, lower SOD3 concentration and higher total antioxidative capacity (TAC) values. Intersexual variability was observed in concentration of copper, zinc, and cadmium. The obese showed higher total oxidative capacity regardless of sex. An increase in SOD2 activity was coexistent with obesity in men, and exposition to cigarette smoke in non-obese individuals. Additionally, in state of this exposition, Cu,Zn-SOD contribution to the total SOD was lower. Interestingly, over 90% of the obese were of C/T genotype of rs4880 (SOD2). Non-obese of T/T genotype (rs4880) were of lower total SOD activity due to decrease in both Cu,Zn-SOD and Mn-SOD activities. SNP rs2234694 was associated with differences in concentration of SODs, depending on obesity status. Correlations indicate that both TAC and SODs, together, may adapt to insulin resistance and inflammation-derived oxidative stress found in obesity. This topic should be further investigated.
Collapse
|
8
|
da Cruz Jung IE, da Cruz IBM, Barbisan F, Trott A, Houenou LJ, Osmarin Turra B, Duarte T, de Souza Praia R, Maia-Ribeiro EA, da Costa Escobar Piccoli J, Bica CG, Duarte MMMF. Superoxide imbalance triggered by Val16Ala-SOD2 polymorphism increases the risk of depression and self-reported psychological stress in free-living elderly people. Mol Genet Genomic Med 2019; 8:e1080. [PMID: 31891227 PMCID: PMC7005615 DOI: 10.1002/mgg3.1080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammatory states triggered by a single-nucleotide polymorphism (SNP) in superoxide dismutase manganese-dependent gene (Val16Ala-SOD2) have been associated with the risk of developing several chronic, nontransmissible diseases. However, it is still not clear whether the VV-SOD2 genotype that causes higher basal superoxide anion levels has any impact on the risk for depression and self-reported psychological stress in elderly people. METHODS In the present study, we tested this hypothesis using a case-control study where depression was detected using the Geriatric Depression Scale-15 (GDS-15). A total of 612 Brazilian free-living elderly subjects with a mean age of 67.1 ± 7.1 years old (number of controls, C = 497, and depressive individuals, D = 115) were included in this study. All participants had similar social, health, and lifestyle variables, with the exception of polypharmacy (≥5 medicines daily intake), which was higher in the D group, compared to C subjects. RESULTS Our results showed that the VV-SOD2 genotype significantly increased the risk for depression and psychological stress in the elderly subjects, independently of sex/gender, age, and other prior diseases and health indicators (depression risk = 1.842, 1.109-3.061 95% CI, p = .018). VV-subjects also had a higher daily intake of antidepressants, anxiolytics, and anti-inflammatory drugs than A-allele subjects. CONCLUSION Our findings support the hypothesis that genetically induced oxidative superoxide-hydrogen peroxide imbalance may be involved in an increased risk for developing depression and psychological stress in free-living elderly people without other chronic nontransmissible diseases.
Collapse
Affiliation(s)
- Ivo Emilio da Cruz Jung
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexis Trott
- Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, RS, Brazil
| | - Lucien J Houenou
- Biotechnology Department, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Bárbara Osmarin Turra
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Duarte
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Claudia Giugliano Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
9
|
Liu Q, Liu H, Bai H, Huang W, Zhang R, Tan J, Guan L, Fan P. Association of SOD2 A16V and PON2 S311C polymorphisms with polycystic ovary syndrome in Chinese women. J Endocrinol Invest 2019; 42:909-921. [PMID: 30607774 DOI: 10.1007/s40618-018-0999-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the relationship between superoxide dismutase 2 (SOD2) A16V and paraoxonase 2 (PON2) S311C gene variants and the risk of polycystic ovary syndrome (PCOS) and evaluate the effects of the genotypes on clinical, hormonal, metabolic and oxidative stress indexes in Chinese women. METHODS This is a cross-sectional study of 932 patients with PCOS and 745 control women. For the clinical and metabolic association study of genotypes, 631 patients and 492 controls were included after excluding the subjects with interferential factors. Genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis. Serum total oxidant status, total antioxidant capacity (T-AOC), oxidative stress index and malondialdehyde (MDA) levels, and clinical and metabolic parameters were also analyzed. RESULTS The prevalence of the A allele of SOD2 A16V polymorphism was significantly greater in patients with PCOS than in control subjects. Genotype (AA + AV) remained a significant predictor for PCOS in prognostic models including age, body mass index, insulin resistance index, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TGs) as covariates. Patients carrying the A allele had significantly higher serum luteinizing hormone (LH) levels, and the ratio of LH to follicle-stimulating hormone compared with patients with the VV genotype. We also showed that patients carrying the C allele of the PON2 S311C polymorphism had lower T-AOC compared with patients carrying the SS genotype. However, no significant differences were observed in the frequencies of the S311C genotypes and alleles of the PON2 gene between PCOS and control groups. CONCLUSION The SOD2 A16V, but not PON2 S311C, polymorphism may be one of the genetic determinants for PCOS in Chinese women.
Collapse
Affiliation(s)
- Q Liu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - H Bai
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - W Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - R Zhang
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Guan
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - P Fan
- Laboratory of Genetic Disease and Perinatal Medicine, West China Second University Hospital, SichuanUniversity, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Maslov LN, Naryzhnaya NV, Boshchenko AA, Popov SV, Ivanov VV, Oeltgen PR. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 15:1-5. [PMID: 30479968 PMCID: PMC6240632 DOI: 10.1016/j.jcte.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
Abstract
Metabolic syndrome is accompanied by oxidative stress in animals and humans. The main source of ROS in experimental metabolic syndrome is NADPH oxidase and possibly adipocyte mitochondria. It is now documented that oxidative stress induces insulin resistance of adipocytes and increases secretion of leptin, MCP-1, IL-6, and TNF-α by adipocytes. It was established that oxidative stress induces a decrease in adiponectin production by adipocytes. It has also been shown that obesity itself can induce oxidative stress. Oxidative stress can cause an alteration of intracellular signaling in adipocytes that apparently leads to the formation of insulin resistance of adipocytes. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α also play an important role in the pathogenesis of oxidative stress of adipocytes. Oxidative stress is not only a consequence of metabolic syndrome, but also a reason and a foundational link in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
11
|
Chao CT, Huang JW, Chiang CK, Chen YC, Fang CC, Hu FC, Chang CC, Yen CJ. Diabetes mellitus, superoxide dismutase and peroxisome proliferator activated receptor gamma polymorphisms modify the outcome of end-stage renal disease patients of Han Chinese origin. Nephrology (Carlton) 2018; 23:117-125. [PMID: 27925431 DOI: 10.1111/nep.12975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022]
Abstract
AIM Increased oxidative stress significantly modifies the outcome of patients with diabetes mellitus (DM) and end-stage renal disease (ESRD), and is counteracted by antioxidative capacity. We aimed to investigate whether antioxidant single nucleotide polymorphisms (SNPs) influence the outcome of ESRD individuals and the influences exerted by DM, which has not been tested before. METHODS We prospectively enrolled multi-centre ESRD patients of Han Chinese origin between 2002 and 2003, recording their antioxidant (superoxide dismutase [SOD2], glutathione peroxidase [GPX1]) and peroxisome proliferator activated receptor-γ (PPAR-γ) genotyping results, and stratified based on DM. They were followed up until 2008, with risk factors for mortality analyzed by Cox proportional hazard regression. RESULTS We discovered that diabetic ESRD carriers of CC genotype of SOD2 exon 2 had an increased risk of mortality compared to non-diabetic ones with other genotypes (hazard ratio [HR] 4.04, P = 0.04), while GPX1 SNPs had no influence. Interactions between SOD2 and PPAR-γ SNPs regarding the mortality influence were also detected (for SOD2 CC genotype x PPAR-γ exon 6 CT genotype, HR 3.19, P = 0.008), suggesting the importance of considering a combination panel of SNPs on patient survival. CONCLUSION This might be the largest study focusing on the relationship between antioxidant SNPs and the outcomes of diabetic ESRD patients of Han Chinese origin. More studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital Jinshan branch, New Taipei City, Taiwan.,Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Fang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Chang Hu
- Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chih Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Jen Yen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Geriatric Medicine and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Ilhan M, Turgut S, Turan S, Demirci Cekic S, Ergen HA, Korkmaz Dursun G, Mezani B, Karaman O, Yaylim I, Apak MR, Tasan E. The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly. Endocr J 2018; 65:91-99. [PMID: 29046499 DOI: 10.1507/endocrj.ej17-0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
Collapse
Affiliation(s)
- Muzaffer Ilhan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Seda Turgut
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Saime Turan
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Sema Demirci Cekic
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Hayriye Arzu Ergen
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Gurbet Korkmaz Dursun
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Brunilda Mezani
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Ilhan Yaylim
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Mustafa Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ertugrul Tasan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| |
Collapse
|
13
|
Hernández-Guerrero C, Parra-Carriedo A, Ruiz-de-Santiago D, Galicia-Castillo O, Buenrostro-Jáuregui M, Díaz-Gutiérrez C. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention. GENES & NUTRITION 2018; 13:1. [PMID: 29339975 PMCID: PMC5759352 DOI: 10.1186/s12263-017-0590-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Genetic polymorphisms of antioxidant enzymes CAT, GPX, and SOD are involved in the etiology of obesity and its principal comorbidities. The aim of the present study was to analyze the effect of aforementioned SNPs over the output of several variables in people with obesity after a nutritional intervention. The study included 92 Mexican women, which received a dietary intervention by 3 months. Participants were genotyped and stratified into two groups: (1) carriers; mutated homozygous plus heterozygous (CR) and (2) homozygous wild type (WT). A comparison between CR and WT was done in clinical (CV), biochemical (BV), and anthropometric variables (AV), at the beginning and at the end of the intervention. RESULTS Participants (n = 92) showed statistically significant differences (p < 0.05) at the end of the nutritional intervention in several CV, BV, and AV. However, two kinds of responses were observed after genotyping participants: (A) CR and WT showed statistically significant differences (p < 0.05) in several CV, BV, and AV for the SNPs 599C>T GPX1 (rs1050450), - 251A>G SOD1 (rs2070424), and - 262C>T CAT (rs1001179). (B) Only CR showed statistically changes (p < 0.05) in several CV, BV, and AV for the SNPs - 21A>T CAT (rs7943316) and 47C>T SOD2 (rs4880). The dietary intervention effect was statistically significantly between the polymorphisms of 47C>T SOD2 and BMI, SBP, TBARS, total cholesterol, and C-LCL (p < 0.05) and between the polymorphisms of - 21A>T CAT (rs7943316) and SBP, DBP, total cholesterol, and atherogenic index (p < 0.05). CONCLUSION People with obesity display different response in several CV, BV, and AV after a nutritional intervention, depending on the antioxidant genetic background of SOD and CAT enzymes.
Collapse
Affiliation(s)
- César Hernández-Guerrero
- Departamento de Salud, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Col Santa Fe, 01219 México City, Mexico
| | - Alicia Parra-Carriedo
- Departamento de Salud, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Col Santa Fe, 01219 México City, Mexico
| | - Diana Ruiz-de-Santiago
- Especialidad en Obesidad y Comorbilidades, Universidad Iberoamericana, Ciudad de México, Mexico
| | | | | | - Carmen Díaz-Gutiérrez
- Departamento de Salud, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Col Santa Fe, 01219 México City, Mexico
| |
Collapse
|
14
|
Ma Q, Huang H, Sun L, Zhou T, Zhu J, Cheng X, Duan L, Li Z, Cui L, Ba Y. Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? CHEMOSPHERE 2017; 188:525-531. [PMID: 28910727 DOI: 10.1016/j.chemosphere.2017.08.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of endemic fluorosis is derived from high fluoride levels in drinking water and industrial fumes or dust. Reproductive disruption is also a major harm caused by fluoride exposure besides dental and skeletal lesions. However, few studies focus on the mechanism of fluoride exposure on male reproductive function, especially the possible interaction of fluoride exposure and gene polymorphism on male reproductive hormones. Therefore, we conducted a cross-sectional study in rural areas of Henan province in China to explore the interaction between the estrogen receptor alpha (ERα) gene and fluoride exposure on reproductive hormone levels in male farmers living in the endemic fluorosis villages. The results showed that fluoride exposure significantly increased the serum level of estradiol in the hypothalamic-pituitary-testicular (HPT) axis in male farmers. Moreover, the observations indicated that fluoride exposure and genetic markers had an interaction on serum concentration of follicle-stimulating hormone and estradiol, and the interaction among different loci of the ERα gene could impact the serum testosterone level. Findings in the present work suggest that chronic fluoride exposure in drinking water could modulate the levels of reproductive hormones in males living in endemic fluorosis areas, and the interaction between fluoride exposure and ERα polymorphisms might affect the serum levels of hormones in the HPT axis in male farmers.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hui Huang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Long Sun
- Kaifeng Disease Control and Prevention Center, Kaifeng, Henan, 475004, China
| | - Tong Zhou
- Shandong Disease Control and Prevention Center, Jinan, Shandong, 250014, China
| | - Jingyuan Zhu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lijv Duan
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Liuxin Cui
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
15
|
Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients 2017; 9:nu9060551. [PMID: 28555008 PMCID: PMC5490530 DOI: 10.3390/nu9060551] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity has been related to an increased risk of multiple diseases in which oxidative stress and inflammation play a role. Gut microbiota has emerged as a mediator in this interaction, providing new mechanistic insights at the interface between fat metabolism dysregulation and obesity development. Our aim was to analyze the interrelationship among obesity, diet, oxidative stress, inflammation and the intestinal microbiota in 68 healthy adults (29.4% normal-weight). Diet was assessed through a food frequency questionnaire and converted into nutrients and dietary compounds using food composition tables. The intestinal microbiota was assessed by quantitative PCR, fecal short chain fatty acids by gas chromatography and serum biomarkers by standard protocols. Higher levels of malondialdehyde (MDA), C reactive protein (CRP), serum leptin, glucose, fat percentage and the intestinal Lactobacillus group were found in the obese people. Cluster analysis of body mass index, fat mass, glucose, LDL/HDL ratio, leptin, MDA and CRP classified the subjects into two groups. The levels of the intestinal Bacteroides-Prevotella-Porphyromonas group were lower in the cluster and linked to a higher pro-oxidant and pro-inflammatory status, whose individuals also had lower intake of fruits, dried fruits, and fish. These results could be useful for designing strategies targeted to obesity prevention.
Collapse
|
16
|
Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients. J Immunol Res 2017; 2017:2157247. [PMID: 28512644 PMCID: PMC5420430 DOI: 10.1155/2017/2157247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
Increased free radical production had been documented in group A (β-hemolytic) streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs) interactions with erysipelas' predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas' predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.
Collapse
|
17
|
The effects of rosuvastatin on lipid-lowering, inflammatory, antioxidant and fibrinolytics blood biomarkers are influenced by Val16Ala superoxide dismutase manganese-dependent gene polymorphism. THE PHARMACOGENOMICS JOURNAL 2016; 16:501-506. [PMID: 26882122 DOI: 10.1038/tpj.2015.91] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 10/29/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Abstract
Rosuvastatin is a cholesterol-lowering drug that also attenuates the inflammatory process and oxidative stress via the reduction of superoxide anion production. Superoxide anions are metabolized by manganese-dependent superoxide dismutase (MnSOD or SOD2) in the mitochondria. In humans, there is a gene polymorphism where a change of alanine (Ala) to valine (Val) occurs at the 16th amino acid (Ala16Val-SOD2). The VV genotype has been associated with the risk of developing several metabolic diseases, such as hypercholesterolemia. Thus, to further explore this phenomenon, this study investigated the influence of the Val16Ala-SOD2 polymorphism on the lipid profile and inflammatory and fibrinolytic biomarkers of 122 hypercholesterolemic patients undergoing the first pharmacological cholesterol-lowering therapy who were treated with 20 mg rosuvastatin for 120 days. The findings indicate that the VV patients who present a low-efficiency SOD2 enzyme exhibit an attenuated response to rosuvastatin compared with the A-allele patients. The effect of rosuvastatin on inflammatory and fibrinolytic biomarkers was also less intense in the VV patients. These results suggest some pharmacogenetic effects of Val16Ala-SOD2 in hypercholesterolemia treatment.
Collapse
|