1
|
Wei Y, Jiang Y, Lu Y, Hu Q. Histone modifications in Duchenne muscular dystrophy: pathogenesis insights and therapeutic implications. J Med Genet 2024; 61:1003-1010. [PMID: 39327039 DOI: 10.1136/jmg-2024-110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a commonly encountered genetic ailment marked by loss-of-function mutations in the Dystrophin gene, ultimately resulting in progressive debilitation of skeletal muscle. The investigation into the pathogenesis of DMD has increasingly converged on the role of histone modifications within the broader context of epigenetic regulation. These modifications, including histone acetylation, methylation and phosphorylation, are catalysed by specific enzymes and play a critical role in gene expression. This article provides an overview of the histone modifications occurring in DMD and analyses the research progress and potential of different types of histone modifications in DMD due to changes in cellular signalling for muscle regeneration, to provide new insights into diagnostic and therapeutic options for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Key Laboratory of Biological Molecular Medicine Research of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Qi YC, Bai H, Hu SL, Li SJ, Li QZ. Coregulatory effects of multiple histone modifications in key ferroptosis-related genes for lung adenocarcinoma. Epigenomics 2024; 16:609-633. [PMID: 38511238 PMCID: PMC11160448 DOI: 10.2217/epi-2023-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.
Collapse
Affiliation(s)
- Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Si-Le Hu
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Shu-Juan Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
- The State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
3
|
Zhai YY, Li QZ, Chen YL, Zhang LQ. Identification of Key Histone Modifications and Hub Genes for Colorectal Cancer Metastasis. Curr Bioinform 2022. [DOI: 10.2174/1574893616999210805164414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal-
Epithelial Transition (MET) are essential for tumor cells metastasis. However, the effect of epigenetic
modifications on this transition is unclear.
Objective:
We aimed to explore the key histone modifications and hub genes of EMT/MET during Colorectal
Cancer (CRC) metastasis.
Method:
The differentially expressed genes and differentially histone modified genes were identified.
Based on the histone modification features, the up- and down-regulated genes were predicted by Random
Forest algorithm. Through protein-protein interaction network and Cytoscape analysis, the hub
genes with histone modification changes were selected. GO, KEGG and survival analyses were performed
to confirm the importance of the hub genes.
Results:
It was found that H3K79me3 plays an important role in EMT/MET. And the 200-300bp and
400-500bp downstream of TSS may be the key regulatory regions of H3K79me3. Moreover, we found
that the expression of the hub genes was down-regulated in EMT and then up-regulated in MET. And
the changes of the hub genes expression were consistent with the changes of H3K79me3 signal in the
specific regions of the genome. Finally, the hub genes KRT8 and KRT18 were involved in the metastasis
process and were significantly related to the survival time.
Conclusion:
H3K79me3 may be crucial for EMT/MET, and the hub genes KRT8 and KRT18 may be
the key genes in this process.
Collapse
Affiliation(s)
- Yuan-Yuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| | - Qian-Zhong Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner
Mongolia University, Hohhot 010070, China
| | - Ying-Li Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| |
Collapse
|
4
|
Patra SK. Emerging histone glutamine modifications mediated gene expression in cell differentiation and the VTA reward pathway. Gene 2020; 768:145323. [PMID: 33221535 DOI: 10.1016/j.gene.2020.145323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Gene expression is the key to cellular functions and homeostasis. Histone modifications regulate chromatin dynamics and gene expression. Neuronal cell functions largely depend on fluxes of neurotransmitters for activation of chromatin and gene expression. New studies by Lepack et al. and Farrelly et al. recently demonstrated how tissue transglutaminase 2 (TGM2) mediated histone glutamine modifications, either dopaminylation in the dopaminergic reward pathway or serotonylation in the context of cellular differentiation and signaling regulate gene expression and decipher striking differences from their known functions. This opens new avenues of research in the field of epigenetics in general and neuroepigenetics as special; and to find out the enzymes responsible for the reversible reaction of histone de-dopaminylation and de-serotonylation.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
5
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
6
|
Wu X, Li R, Song Q, Zhang C, Jia R, Han Z, Zhou L, Sui H, Liu X, Zhu H, Yang L, Wang Y, Ji Q, Li Q. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:435. [PMID: 31665047 PMCID: PMC6819649 DOI: 10.1186/s13046-019-1439-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
Background Our previous work demonstrated that lncRNA-MALAT1 was overexpressed in recurrent colorectal cancer (CRC) and metastatic sites in post-surgical patients. However, the upstream regulatory mechanism of MALAT1 is not well-defined. Histone demethylase JMJD2C holds great potential of epigenetic regulating mechanism in tumor diseases, especially the moderating effect on the promoter activity of targeted genes associated closely with tumor development. Therefore, we herein investigated whether JMJD2C could epigeneticly regulate the promoter activity of MALAT1 and the downstream β-catenin signaling pathway, thereby affecting the metastatic abilities of CRC cells. Methods JMJD2C expressions in human CRC samples were detected by real-time PCR and immunohistochemistry staining. Gene silencing and overexpressing efficiencies of JMJD2C were confirmed by real-time PCR and western blot. The migration of CRC cells in vitro were tested by transwell and wound healing assays. The protein expression and cellular localization of JMJD2C and β-catenin were characterized by immunofluorescence staining and western blot. The histone methylation level of MALAT1 promoter region (H3K9me3 and H3K36me3) was tested by ChIP-PCR assays. The promoter activity of MALAT1 was detected by luciferase reporter assay. The expressions of MALAT1 and the downstream β-catenin signaling pathway related genes in CRC cells were detected by real-time PCR and western blot, respectively. The nude mice tail vein metastasis model was established to observe the effect of JMJD2C on the lung metastasis of CRC cells in vivo. Results Our present results indicated that histone demethylase JMJD2C was overexpressed in matched CRC tumor tissues of primary and metastatic foci, and CRC patients with lower JMJD2C expression in primary tumors had better prognosis with longer OS (Overall Survival). The following biological function observation suggested that JMJD2C promoted CRC metastasis in vitro and in vivo. Further molecular mechanism investigation demonstrated that JMJD2C protein translocated into the nuclear, lowered the histone methylation level of MALAT1 promoter in the sites of H3K9me3 and H3K36me3, up-regulated the expression of MALAT1, and enhanced the β-catenin signaling pathway in CRC cells. Conclusion Our data demonstrated that JMJD2C could enhance the metastatic abilities of CRC cells in vitro and in vivo by regulating the histone methylation level of MALAT1 promoter, thereby up-regulating the expression of MALAT1 and enhancing the activity of β-catenin signaling pathway, providing that JMJD2C might be a novel therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Xinnan Wu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Song
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Liu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Jin W, Li QZ, Liu Y, Zuo YC. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics 2019; 112:853-858. [PMID: 31170440 DOI: 10.1016/j.ygeno.2019.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone modifications (HMs) and transcription factors (TFs) can alter the expression of cancer-related genes to promote tumorigenesis. We studied the variations of 11 HMs and 2 TFs in human breast cancer cells (MCF-7) compared to human normal mammary epithelial cells (HMEC), and the effects of HMs/TFs in various regions of the genome on the expression changes of breast cancer-related genes. Based on HMs and TFs signals' differences between MCF-7 and HMEC flanking TSSs, the up- and down-regulated genes in MCF-7 were predicted by Random Forest, and important HMs and regions were found. Results indicate that H3K79me2, H3K27ac, and H3K4me1 are particularly important for the changes of gene expression in MCF-7. Especially, H3K79me2 around the 60-th bin flanking TSSs may be the key for regulating gene expression. Our studies reveal H3K79me2 may be a core HM for breast cancer.
Collapse
Affiliation(s)
- Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Yuan Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yong-Chun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
8
|
Zhang LQ, Li QZ. Estimating the effects of transcription factors binding and histone modifications on gene expression levels in human cells. Oncotarget 2018; 8:40090-40103. [PMID: 28454114 PMCID: PMC5522221 DOI: 10.18632/oncotarget.16988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/11/2017] [Indexed: 12/22/2022] Open
Abstract
Transcription factors and histone modifications are vital for the regulation of gene expression. Hence, to estimate the effects of transcription factors binding and histone modifications on gene expression, we construct a statistical model for the genome-wide 15 transcription factors binding data, 10 histone modifications profiles and DNase-I hypersensitivity data in three mammalian. Remarkably, our results show POLR2A and H3K36me3 can highly and consistently predict gene expression in three cell lines. And H3K4me3, H3K27me3 and H3K9ac are more reliable predictors than other histone modifications in human embryonic stem cells. Moreover, genome-wide statistical redundancies exist within and between transcription factors and histone modifications, and these phenomena may be caused by the regulation mechanism. In further study, we find that even though transcription factors and histone modifications offer similar effects on expression levels of genome-wide genes, the effects of transcription factors and histone modifications on predictive abilities are different for genes in independent biological processes.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget 2017; 8:91723-91733. [PMID: 29207681 PMCID: PMC5710961 DOI: 10.18632/oncotarget.19176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.
Collapse
|
10
|
Su WX, Li QZ, Zhang LQ, Fan GL, Wu CY, Yan ZH, Zuo YC. Gene expression classification using epigenetic features and DNA sequence composition in the human embryonic stem cell line H1. Gene 2016; 592:227-234. [DOI: 10.1016/j.gene.2016.07.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/20/2016] [Accepted: 07/23/2016] [Indexed: 01/01/2023]
|