1
|
Le N, Heras J, Herrera MJ, German DP, Crummett LT. The genome of Anoplarchus purpurescens (Stichaeidae) reflects its carnivorous diet. Mol Genet Genomics 2023; 298:1419-1434. [PMID: 37690047 PMCID: PMC10657299 DOI: 10.1007/s00438-023-02067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The "Adaptive Modulation Hypothesis" (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome of Anoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that of Cebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced for A. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin. Anoplarchus purpurescens had fewer copies of pancreatic α-amylase (carbohydrate digestion) than C. violaceus (1 vs. 3 copies). Moreover, A. purpurescens had one fewer copy of carboxyl ester lipase (plant lipid digestion) than C. violaceus (4 vs. 5). We observed an expansion in copy number for several protein digestion genes in A. purpurescens compared to C. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.
Collapse
Affiliation(s)
- Ninh Le
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Heras
- Department of Biology, California State University, San Bernardino, CA, 92407, USA
| | - Michelle J Herrera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Lisa T Crummett
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
2
|
Shen Y, Song L, Chen T, Jiang H, Yang G, Zhang Y, Zhang X, Lim KK, Meng X, Zhao J, Chen X. Identification of hub genes in digestive system of mandarin fish (Siniperca chuatsi) fed with artificial diet by weighted gene co-expression network analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101112. [PMID: 37516099 DOI: 10.1016/j.cbd.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a carnivorous freshwater fish and an economically important species. The digestive system (liver, stomach, intestine, pyloric caecum, esophagus, and gallbladder) is an important site for studying fish domestication. In our previous study, we found that mandarin fish undergoes adaptive changes in histological morphology and gene expression levels of the digestive system when subjected to artificial diet domestication. However, we are not clear which hub genes are highly associated with domestication. In this study, we performed WGCNA on the transcriptomes of 17 tissues and 9 developmental stages and combined differentially expressed genes analysis in the digestive system to identify the hub genes that may play important functions in the adaptation of mandarin fish to bait conversion. A total of 31,657 genes in 26 samples were classified into 23 color modules via WGCNA. The modules midnightblue, darkred, lightyellow, and darkgreen highly associated with the liver, stomach, esophagus, and gallbladder were extracted, respectively. Tan module was highly related to both intestine and pyloric caecum. The hub genes in liver were cp, vtgc, c1in, c9, lect2, and klkb1. The hub genes in stomach were ghrl, atp4a, gjb3, muc5ac, duox2, and chia2. The hub genes in esophagus were mybpc1, myl2, and tpm3. The hub genes in gallbladder were dyst, npy2r, slc13a1, and slc39a4. The hub genes in the intestine and pyloric caecum were slc15a1, cdhr5, btn3a1, anpep, slc34a2, cdhr2, and ace2. Through pathway analysis, modules highly related to the digestive system were mainly enriched in digestion and absorption, metabolism, and immune-related pathways. After domestication, the hub genes vtgc and lect2 were significantly upregulated in the liver. Chia2 was significantly downregulated in the stomach. Slc15a1, anpep, and slc34a2 were significantly upregulated in the intestine. This study identified the hub genes that may play an important role in the adaptation of the digestive system to artificial diet, which provided novel evidence and ideas for further research on the domestication of mandarin fish from molecular level.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Lingyuan Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Kah Kheng Lim
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Zhao N, Jia L, Wang Q, Deng Q, Ru X, Zhu C, Zhang B. The feasibility of skin mucus replacing exosome as a pool for bacteria-infected markers development via comparative proteomic screening in teleost. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108483. [PMID: 36509412 DOI: 10.1016/j.fsi.2022.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In fish, skin mucus forms a protective barrier between the body surface and the external water environment, thus providing the most direct and intuitive clues to monitor the subject's health condition. To explore the impact of the Vibrio harveyi pathogen on teleost, the proteome of epidermal mucus from control and sick Cynoglossus semilaevis were screened through iTRAQ followed with LC-MS/MS. 1531 credible proteins were obtained relating to structural, metabolic and immunological functions. 335 different expressed proteins (DEPs) were identified, with 166 up-regulated and 169 down-regulated in MS. 62 proteins were characterized, including 22 up-regulated proteins and 40 down-regulated proteins. Integrated analysis of DE-miRNAs and DEPs from miRomics and proteomics were conducted to show the indirect regulatory relationship. Comparative analysis of DEPs between mucus and exosomes demonstrated that exosomes contributed the most DEPs of all mucus DEPs. 125 proteins are DEPs only in exosomes, which presented minor difference in total mucus. Expression of Aminopeptidase (anpep), Calcium-transporting ATPase, Histone H2B and H2A confirmed implied fine discriminative power with infected C. semilaevis, among which Calcium-transporting ATPase and H2B also appeared in list of exosomal markers. This study might shed the light on effective biomarker digging at other extended screening scenarios.
Collapse
Affiliation(s)
- Na Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Qiumei Wang
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Qiuxia Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Xiaoying Ru
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Bo Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China.
| |
Collapse
|
4
|
Pleić IL, Bušelić I, Messina M, Hrabar J, Žuvić L, Talijančić I, Žužul I, Pavelin T, Anđelić I, Pleadin J, Puizina J, Grubišić L, Tibaldi E, Šegvić-Bubić T. A plant-based diet supplemented with Hermetia illucens alone or in combination with poultry by-product meal: one step closer to sustainable aquafeeds for European seabass. J Anim Sci Biotechnol 2022; 13:77. [PMID: 35811320 PMCID: PMC9272557 DOI: 10.1186/s40104-022-00725-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Increasing demand for high-value fish species and pressure on forage fish is challenging aquaculture to ensure sustainable growth by replacing protein sources in aquafeeds with plant and terrestrial animal proteins, without compromising the economic value and quality of the final fish product. In the present study, the effects of a plant protein-based diet (CV), two plant-based diets in which graded amounts of plan protein mixtures were replaced with Hermetia illucens meal alone (VH10) or in combination with poultry by-product meal (PBM) (VH10P30), a fishmeal (FM) diet (CF) and an FM diet supplemented with H. illucens (FH10) on growth performance, gut health and homeostasis of farmed subadult European seabass were tested and compared. Results Fish fed the VH10 and VH10P30 diets showed the highest specific growth rates and lowest feed conversion ratios among the tested groups. Expectedly, the best preservation of PI morphology was observed in fish fed the CF or FH10 diets, while fish fed the CV diet exhibited significant degenerative changes in the proximal and distal intestines. However, PBM supplementation mitigated these effects and significantly improved all gut morphometric parameters in the VH10P30 group. Partial substitution of the plant mixture with insect meal alone or PBM also induced most BBM genes and activated BBM enzymes, suggesting a beneficial effect on intestinal digestive/absorption functions. Regarding intestinal microbiota, fish fed diets containing H. illucens meal (FH10, VH10, VH10P30) had the highest richness of bacterial communities and abundance of beneficial genera such as Lactobacillus and Bacillus. On the other hand, fish fed CV had the highest microbial diversity but lost a significant component of fish intestinal microbiota, the phylum Bacteroidetes. Finally, skin pigmentation most similar to that of farmed or even wild seabass was also observed in the fish groups fed CF, FH10 or VH10P30. Conclusion Plant-based diets supplemented with PBM and H. illucens pupae meal have great potential as alternative diets for European seabass, without affecting growth performance, gut homeostasis, or overall fitness. This also highlights the importance of animal proteins in diets of European seabass, as the addition of a small amount of these alternative animal protein sources significantly improved all measured parameters. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00725-z.
Collapse
|
5
|
Growth and Welfare of Rainbow Trout ( Oncorhynchus mykiss) in Response to Graded Levels of Insect and Poultry By-Product Meals in Fishmeal-Free Diets. Animals (Basel) 2022; 12:ani12131698. [PMID: 35804596 PMCID: PMC9264821 DOI: 10.3390/ani12131698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 12/19/2022] Open
Abstract
This study compared the nutrient-energy retention, digestive function, growth performance, and welfare of rainbow trout (ibw 54 g) fed isoproteic (42%), isolipidic (24%), fishmeal-free diets (CV) over 13 weeks. The diets consisted of plant-protein replacement with graded levels (10, 30, 60%) of protein from poultry by-product (PBM) and black soldier fly H. illucens pupae (BSFM) meals, either singly or in combination. A fishmeal-based diet was also tested (CF). Nitrogen retention improved with moderate or high levels of dietary PBM and BSFM relative to CV (p < 0.05). Gut brush border enzyme activity was poorly affected by the diets. Gastric chitinase was up-regulated after high BSFM feeding (p < 0.05). The gut peptide and amino acid transport genes were differently regulated by protein source and level. Serum cortisol was unaffected, and the changes in metabolites stayed within the physiological range. High PBM and high BSFM lowered the leukocyte respiratory burst activity and increased the lysozyme activity compared to CV (p < 0.05). The BSFM and PBM both significantly changed the relative percentage of lymphocytes and monocytes (p < 0.05). In conclusion, moderate to high PBM and BSFM inclusions in fishmeal-free diets, either singly or in combination, improved gut function and nutrient retention, resulting in better growth performance and the good welfare of the rainbow trout.
Collapse
|
6
|
Wang Z, Tang D, Guo H, Shen C, Wu L, Luo Y. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 2020; 148:87-99. [PMID: 32096054 DOI: 10.1007/s10709-020-00090-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Crabs feed on a wide range of items and display diverse feeding strategies. The primary objective of this study was to investigate 10 digestive enzyme genes in representative crabs to provide insights into the genetic basis of feeding habits among crab functional groups. Crabs were classified into three groups based on their feeding habits: herbivores (HV), omnivores (OV), and carnivores (CV). To test whether crabs' feeding adaptations matched adaptive evolution of digestive enzyme genes, we examined the 10 digestive enzyme genes of 12 crab species based on hepatopancreas transcriptome data. Each of the digestive enzyme genes was compared to orthologous sequences using both nucleotide- (i.e., PAML and Datamonkey) and protein-level (i.e., TreeSAAP) approaches. Positive selection genes were detected in HV crabs (AMYA, APN, and MGAM) and CV crabs (APN, CPB, PNLIP, RISC, TRY, and XPD). Additionally, a series of positive selection sites were localized in important functional regions of these digestive enzyme genes. This is the first study to characterize the molecular basis of crabs' digestive enzyme genes based on functional feeding group. Our data suggest that HV crabs have evolved an enhanced digestion capacity for carbohydrates, and CV crabs have acquired digestion capacity for proteins and lipids.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China.
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Huayun Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| | - Yaqi Luo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224001, Jiangsu, China
| |
Collapse
|
7
|
Limbu SM, Zhang H, Luo Y, Chen LQ, Zhang M, Du ZY. High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113508. [PMID: 31706777 DOI: 10.1016/j.envpol.2019.113508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics used in global aquaculture production cause various side effects, which impair fish health. However, the use of dietary composition such as carbohydrate, which is one of the dominant components in fish diets to attenuate the side effects induced by antibiotics, remains unclear. We determined the ability of high carbohydrate diet to protect Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Triplicate groups of thirty O. niloticus (9.50 ± 0.08 g) were fed on medium carbohydrate (MC; 335 g/kg) and high carbohydrate (HC; 455 g/kg) diets without and with 2.00 g/kg diet of oxytetracycline (80 mg/kg body weight/day) hereafter, MCO and HCO for 35 days. Thereafter, we assessed growth performance, hepatic nutrients composition and metabolism, microbiota abundance, immunity, oxidative and cellular stress, hepatotoxicity, lipid peroxidation and apoptosis. To understand the possible mechanism of carbohydrate protection on oxytetracycline, we assessed the binding effects and efficiencies of mixtures of medium and high starch with oxytetracycline as well as the MCO and HCO diets. The O. niloticus fed on the MCO and HCO diets had lower growth rate, nutrients utilization and survival rate than those fed on the MC and HC diets, respectively. Dietary HCO increased hepatosomatic index and hepatic protein content of O. niloticus than MCO diet. The O. niloticus fed on the HCO diet had lower mRNA expression of genes related to protein, glycogen and lipid metabolism compared to those fed on the MCO diet. Feeding O. niloticus on the HCO diet increased innate immunity and reduced pathogenic bacteria, pro-inflammation, hepatotoxicity, cellular stress and apoptosis than the MCO diet. The high starch with oxytetracycline and HCO diet had higher-oxytetracycline binding effects and efficiencies than the medium starch with oxytetracyline and MCO diet, respectively. Our study demonstrates that, high carbohydrate partially protects O. niloticus from oxytetracycline-induced side effects by binding the antibiotic. Incorporating high carbohydrate in diet formulation for omnivorous fish species alleviates some of the side effects caused by antibiotics.
Collapse
Affiliation(s)
- Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China; Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
| | - Han Zhang
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
8
|
Trypsin and N-aminopeptidase (APN) activities in the hepatopancreas of an intertidal euryhaline crab: Biochemical characteristics and differential modulation by histamine and salinity. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:228-235. [DOI: 10.1016/j.cbpa.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/14/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|