1
|
Song J, Zhuang Y, Pan X, Chen Y, Xie F. Variants in PPARD- GLP1R are related to diabetic kidney disease in Chinese Han patients with type 2 diabetes mellitus. Heliyon 2024; 10:e35289. [PMID: 39161836 PMCID: PMC11332863 DOI: 10.1016/j.heliyon.2024.e35289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic susceptibility is an important pathogenic mechanism in diabetic kidney disease (DKD). Our previous studies have identified that PPARδ and GLP-1R are located in a pathway that is closely related to DKD. We aimed to explore the impacts of variants in PPARD-GLP1R on the susceptibility to DKD in Chinese Han patients with type 2 diabetes mellitus (T2DM). A total of 600 T2DM patients (300 with DKD and 300 without DKD) and 200 healthy control subjects were enrolled to identify PPARD (rs2016520, rs2267668 and rs3777744) and GLP1R (rs3765467, rs1042044 and rs9296291) genotype. The SNaPshot method was used to identify variants in PPARD-GLP1R. We performed correlation analysis between variants in PPARD-GLP1R and the susceptibility to DKD. We observed that GLP1R rs3765467 (G > A) was associated with DKD (OR = 3.145, 95 % CI = 2.128-6.021, P = 0.035). None of the other SNPs were associated with DKD. Regarding DKD related traits, rs3765467 was associated with UACR levels and TC, significant differences were observed among patients with different genotypes of rs2016520 in terms of BMI and TG, and patients with the rs3777744 risk G allele had noticeably higher PPG and HbA1c levels (P < 0.05). Moreover, the results showed the interactions between PPARD rs3777744 and GLP1R rs3765467 in the occurrence of DKD (OR = 4.572, P = 0.029). The results of this study indicate the potential relationship between variants in PPARD-GLP1R and the susceptibility to DKD in Chinese Han patients with T2DM.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yongru Zhuang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaojun Pan
- Department of Pharmacy, Wuxi No.5 People's Hospital, Wuxi, 214000, China
| | - Ya Chen
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Fen Xie
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| |
Collapse
|
2
|
Golovina EL, Grishkevich IR, Vaizova OE, Samoilova IG, Podchinenova DV, Matveeva MV, Kudlay DA. [Genetic aspects of type 1 glucagon peptide agonists clinical efficacy: A review]. TERAPEVT ARKH 2023; 95:274-278. [PMID: 37167150 DOI: 10.26442/00403660.2023.03.202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
A review of publications devoted to the analysis of genetic polymorphisms of the gene encoding the glucagon-like peptide type 1 receptor and some other genes directly and indirectly involved in the implementation of its physiological action is presented. The aim of the study: to search for information on genes polymorphism that can affect the effectiveness of glucagon-like peptide type 1 agonists. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was based on PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic source eLIBRARY.RU from 1993 to 2022. The several genes polymorphisms (GLP1R, TCF7L2, CNR1, SORCS1, WFS1, PPARD, CTRB1/2) that may affect the course and therapy of type 2 diabetes mellitus, metabolic syndrome and obesity, was described. Single nucleotide substitutions in some regions of these genes can both decrease and increase the clinical efficacy of the treatment of diabetes mellitus and metabolic syndrome with the help of type 1 glucagon-like peptide agonists: exenatide, liraglutide. Data on the role of genetic variations in the structure of the products of these genes in the effectiveness of other type 1 glucacone-like peptide agonists have not been found.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D A Kudlay
- Sechenov First Moscow State Medical University (Sechenov University)
- NRC Institute of Immunology FMBA of Russia
| |
Collapse
|
3
|
Li S, Zhang Y, Xu W, Lv Z, Xu L, Zhao Z, Zhu D, Song Y. C Allele of the PPARδ+294T>C Polymorphism Confers a Higher Risk of Hypercholesterolemia, but not Obesity and Insulin Resistance: A Systematic Review and Meta-Analysis. Horm Metab Res 2023; 55:355-366. [PMID: 37011890 DOI: 10.1055/a-2043-7707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The relationships of the PPARα Leu162Val and PPARδ+294 T>C polymorphisms with metabolic indexes have been reported to be inconsistent and even contradictory. The meta-analysis was conducted to clarify the relationships between the two variants and the indexes of obesity, insulin resistance, and blood lipids. PubMed, Google Scholar, Embase, and Cochrane Library were searched for eligible studies. Standardized mean difference with 95% confidence interval was calculated to estimate the differences in the metabolic indexes between the genotypes of the Leu162Val and+294 T>C polymorphisms. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. Forty-one studies (44 585 subjects) and 33 studies (23 018 subjects) were identified in the analyses for the Leu162Val and+294 T>C polymorphisms, respectively. C allele carriers of the+294 T>C polymorphism had significantly higher levels of total cholesterol and low-density lipoprotein cholesterol than TT homozygotes in the whole population. Notably, C allele carriers of the+294 T>C polymorphism had significantly higher levels of triglycerides and total cholesterol in East Asians, but lower levels of triglycerides in West Asians than TT homozygotes. Regarding the Leu162Val polymorphism, it was found that Val allele carriers had significantly higher levels of blood glucose than Leu/Leu homozygotes only in European Caucasians. The meta-analysis demonstrates that C allele of the+294 T>C polymorphism in PPARδ gene confers a higher risk of hypercholesterolemia, which may partly explain the relationship between this variant and coronary artery disease.
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Youjin Zhang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Wenhao Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhimin Lv
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Luying Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zixuan Zhao
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Dan Zhu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Feng H, Liu T, Yousuf S, Zhang X, Huang W, Li A, Xie L, Miao X. Identification of potential miRNA-mRNA regulatory network and the key miRNAs in intramuscular and subcutaneous adipose. Front Vet Sci 2022; 9:976603. [PMID: 36090166 PMCID: PMC9453844 DOI: 10.3389/fvets.2022.976603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (IMF) is an important indicator for evaluating meat quality. Breeds with high IMF content are often accompanied by high subcutaneous fat (SCF), severely affecting the meat rate of pigs. Studying the mechanisms of miRNAs related to lipogenesis and lipid metabolism has important implications for pig breeding. We constructed two small RNA libraries from intramuscular and subcutaneous fat to evaluate the patterns of lipogenesis in Laiwu pig, a Chinese breed. A total of 286 differentially expressed miRNAs (DEmiRNAs), including 193 known miRNA and 93 novel miRNAs, were identified from two types of adipose. GO and KEGG enrichment analysis for DEmiRNAs showed that their target genes involved in many adipogenesis and lipid metabolism biological processes and signaling pathways, such as Wnt signaling pathway,MAPK signaling pathway, Hippo signaling pathway, PI3K-Akt signaling pathway, Melanogenesis, Signaling pathways regulating pluripotency of stem cells and so on. Then, we constructed a miRNA-mRNA interaction network to find out which miRNAs were the key miRNAs of regulation in Wnt signaling pathway. In this pathway, miR-331-3p, miR-339-5p, miR-874 and novel346_mature target PPARD, WNT10B, RSPO3, WNT2B. This study provides a theoretical basis for further understanding the post-transcriptional regulation mechanism of meat quality formation and predicting and treating diseases caused by ectopic fat.
Collapse
|
5
|
Song J, Li N, Hu R, Yu Y, Xu K, Ling H, Lu Q, Yang T, Wang T, Yin X. Effects of PPARD gene variants on the therapeutic responses to exenatide in chinese patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:949990. [PMID: 36051387 PMCID: PMC9424689 DOI: 10.3389/fendo.2022.949990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Exenatide is a GLP-1R agonist that often exhibits considerable interindividual variability in therapeutic efficacy. However, there is no evidence about the impact of genetic variants in the PPARD on the therapeutic efficacy of exenatide. This research was aimed to explore the influence of PPARD gene polymorphism on the therapeutic effect of exenatide, and to identify the potential mechanism futher. METHODS A total of 300 patients with T2DM and 200 control subjects were enrolled to identify PPARD rs2016520 and rs3777744 genotypes. A prospective clinical study was used to collect clinical indicators and peripheral blood of T2DM patients treated with exenatide monotherapy for 6 months. The SNaPshot method was used to identify PPARD rs2016520 and rs3777744 genotypes, and then we performed correlation analysis between PPARD gene variants and the efficacy of exenatide, and conducted multiple linear regression analysis of factors affecting the therapeutic effect of exenatide. HepG2 cells were incubated with exenatide in the absence or presence of a PPARδ agonist or the siPPARδ plasmid, after which the levels of GLP-1R and the ratio of glucose uptake were determined. RESULTS After 6 months exenatide monotherapy, we observed that homeostasis model assessment for insulin resistance (HOMA-IR) levels of the subjects with at least one C allele of the PPARD rs2016520 were significantly lower than those with the TT genotype, which suggested that the PPARD rs2016520 TT genotype conferred the poor exenatide response through a reduction of insulin resistance, as measured by HOMA-IR. The carriers of G alleles at rs3777744 exhibited higher levels of in waist to hip ratio (WHR), fasting plasma glucose (FPG), hemoglobin A1c (HbA1c) and HOMA-IR compared to individuals with the AA genotype following 6 months of exenatide treatment, potentially accounting for the lower failure rate of exenatide therapy among the AA homozygotes. In an insulin resistant HepG2 cell model, the PPARδ agonists enhanced exenatide efficacy on insulin resistance, with the expression of GLP-1R being up-regulated markedly. CONCLUSION These data suggest that the PPARD rs2016520 and rs3777744 polymorphisms are associated with exenatide monotherapy efficacy, due to the pivotal role of PPARδ in regulating insulin resistance through affecting the expression of GLP-1R. This study was registered in the Chinese Clinical Trial Register (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Jinfang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ruonan Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ke Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Tao Wang, ; Xiaoxing Yin,
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Tao Wang, ; Xiaoxing Yin,
| |
Collapse
|
6
|
Wang T, Song JF, Zhou XY, Li CL, Yin XX, Lu Q. PPARD rs2016520 (T/C) and NOS1AP rs12742393 (A/C) polymorphisms affect therapeutic efficacy of nateglinide in Chinese patients with type 2 diabetes mellitus. BMC Med Genomics 2021; 14:267. [PMID: 34772419 PMCID: PMC8588701 DOI: 10.1186/s12920-021-01108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Background Genetic polymorphisms in the PPARD and NOS1AP is associated with type 2 diabetes mellitus (T2DM); however, there is no evidence about its impact on the therapeutic efficacy of nateglinide. This study was designed to investigate a potential association of PPARD rs2016520 (T/C) and NOS1AP rs12742393 (A/C) polymorphisms with efficacy of nateglinide in newly diagnosed Chinese patients with type 2 diabetes mellitus (T2DM). Methods Sixty patients with newly diagnosed T2DM were enrolled to identify PPARD rs2016520 and NOS1AP rs12742393 genotypes using the polymerase chain reaction-restriction fragment length polymorphism assay (PCR–RFLP). All subjects were treated with nateglinide (360 mg/day) for 8 weeks. Anthropometric measurements, clinical laboratory tests were obtained at baseline and after 8 weeks of nateglinide treatment. Results After nateglinide treatment for 8 consecutive weeks, patients with at least one C allele of PPARD rs2016520 showed a smaller decrease in post plasma glucose (PPG), homeostasis model assessment for beta cell function (HOMA-B) than those with the TT genotype did (P < 0.05). In patients with the AA genotype of NOS1AP rs12742393, the drug showed better efficacy with respect to levels of fasting plasma glucose (FPG), fasting serum insulin (FINS), HOMA-B and homeostasis model assessment for insulin resistance (HOMA-IR) than in patients with the AC + CC genotype (P < 0.05). NOS1AP rs12742393 genotype distribution and allele frequency were associated with responsiveness of nateglinide treatment (P < 0.05). Conclusions The PPARD rs2016520 and NOS1AP rs12742393 polymorphisms were associated with nateglinide monotherapy efficacy in Chinese patients with newly diagnosed T2DM. Trial registration Chinese Clinical Trial Register ChiCTR13003536, date of registration: May 14, 2013.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jin-Fang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Vural S, Baumgartner M, Lichtner P, Eckstein G, Hariry H, Chen WC, Ruzicka T, Melnik B, Plewig G, Wagner M, Giehl KA. Investigation of gamma secretase gene complex mutations in German population with Hidradenitis suppurativa designate a complex polygenic heritage. J Eur Acad Dermatol Venereol 2021; 35:1386-1392. [PMID: 33559291 DOI: 10.1111/jdv.17163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory disease affecting apocrine gland-bearing skin in the axilla, groin and under the breasts. Mutations of the gamma secretase gene complex, which is essential in the activation of Notch signalling pathways, were shown in some families with HS and in a few sporadic cases. Although an imbalance in Notch signalling is implicated in the pathogenesis, the exact mechanism of HS development is yet unknown. OBJECTIVES We aim to investigate the genetic basis of HS by determining the presence of mutations of gamma secretase gene complex in a cohort of HS patients and by searching for a disease-causing pathogenic variant in a multi-generational HS family using parametric linkage analysis. METHODS Thirty-eight patients clinically diagnosed with HS were included in this study. All exons and exon-intron boundaries of the genes encoding gamma secretase complex consisting of six genes: APH1A, APH1B, PSENEN, NCSTN, PSEN1 and PSEN2 were sequenced by Sanger technique. Genetic mapping with parametric linkage analysis for the patients in the family was performed with eight affected and four healthy individuals. The logarithm of odds was calculated. RESULTS In a sporadic patient with early-onset, severe lesions in axilla and groin, a novel single-nucleotide deletion causing frameshift in exon 1 of the NCSTN gene was identified ((NM_015331.3): c.38delG, p.(Gly13Glufs*15)). The LOD score of 1.5 was never exceeded in any region of the genome, pointing towards intricate multi-genic inheritance pattern within the affected family. CONCLUSIONS The gamma secretase gene complex mutations were rare in our cohort (3.2%). Besides, our analysis indicates a possible complex multi-genic inheritance in a seemingly autosomal dominantly inherited large HS family. Genetics of both familial and sporadic HS may be complicated in most cases, and the role of other potential genes such as autoinflammatory and modifier genes as well as environmental factors may influence the pathogenesis.
Collapse
Affiliation(s)
- S Vural
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany.,Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Turkey
| | - M Baumgartner
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - P Lichtner
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - G Eckstein
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - H Hariry
- Gemeinschaftpraxis, Gütersloh, Germany
| | - W C Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - T Ruzicka
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - B Melnik
- Gemeinschaftpraxis, Gütersloh, Germany.,Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - M Wagner
- Institute of Human Genetics, Technical University Munich, Neuherberg, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - K A Giehl
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
8
|
Carrillo-Venzor MA, Erives-Anchondo NR, Moreno-González JG, Moreno-Brito V, Licón-Trillo A, González-Rodríguez E, Hernández-Rodríguez PDC, Reza-López SA, Loera-Castañeda V, Leal-Berumen I. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico. Genes (Basel) 2020; 11:genes11070776. [PMID: 32664384 PMCID: PMC7397260 DOI: 10.3390/genes11070776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) play roles in glucose and lipid metabolism regulation. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ have been associated with dyslipidemia, hyperglycemia and high body mass index (BMI). We compared metabolic traits and determined associations with Pro12Ala PPAR-γ2 or +294T/C PPAR-δ polymorphism among teenagers from different ethnicity. Four hundred and twelve samples with previous biochemical and biometric measurements were used. Genomic DNA from peripheral blood was extracted and analyzed by end-point PCR for Pro12Ala PPAR-γ2. The +294T/C PPAR-δ PCR product was also digested with Bsl I. Two genotype groups were formed: major allele homozygous and minor allele carriers. Pro12Ala PPAR-γ2 G minor allele frequencies were: 10% in Mestizo-1, 19% in Mestizo-2, 23% in Tarahumara, 12% in Mennonite, and 17% in the total studied population. The +294T/C PPAR-δ C minor allele frequencies were: 18% in Mestizo-1, 20% in Mestizo-2, 6% in Tarahumara, 13% in Mennonite, and 12% in the total studied population. Teenagers with PPAR-γ2 G allele showed a greater risk for either high waist/height ratio or low high-density lipoprotein; and, also had lower total cholesterol. Whereas, PPAR-γ2 G allele showed lower overweight/obesity phenotype (BMI Z-score) frequency, PPAR-δ C allele was a risk factor for it. Metabolic traits were associated with both PPAR polymorphisms.
Collapse
Affiliation(s)
- Martín A. Carrillo-Venzor
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | - Nancy R. Erives-Anchondo
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | - Janette G. Moreno-González
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | - Verónica Moreno-Brito
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | - Angel Licón-Trillo
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | - Everardo González-Rodríguez
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | | | - Sandra A. Reza-López
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
| | | | - Irene Leal-Berumen
- Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua 31109, Mexico; (M.A.C.-V.); (N.R.E.-A.); (J.G.M.-G.); (V.M.-B.); (A.L.T.); (E.G.-R.); (S.A.R.-L.)
- Correspondence:
| |
Collapse
|
9
|
Ding X, Han X, Yuan H, Zhang Y, Gao Y. The Impact of PPARD and PPARG Polymorphisms on Glioma Risk and Prognosis. Sci Rep 2020; 10:5140. [PMID: 32198386 PMCID: PMC7083928 DOI: 10.1038/s41598-020-60996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recent studies showed that peroxisome proliferator-activated receptors (PPARs) had effects on the progression of multiple tumors, but the role of PPARD and PPARG in glioma remains poorly understand. We conducted a case-control study to investigate the association of polymorphisms in PPARD and PPARG with glioma risk and prognosis in the Chinese Han population. Seven polymorphisms (PPARD: rs2016520, rs67056409, rs1053049 and rs2206030; PPARG: rs2920503, rs4073770 and rs1151988) were genotyped using the Agena MassARRAY system in 568 glioma patients and 509 healthy controls. The odd ratios (OR) and 95% confidence interval (CI) were calculated to assess the association of PPARD and PPARG polymorphisms with glioma risk. The Multifactor dimensionality reduction (MDR) method was used to analysis interactions of genetic polymorphisms on glioma risk. Then, we conducted log-rank test, Kaplan-Meier analysis and Cox regression model to evaluate the relationship of PPARD and PPARG polymorphisms with glioma prognosis. We found PPARD polymorphisms (rs2016520, rs67056409, rs1053049) were significantly associated with glioma risk in multiple models (P < 0.05). Stratified analysis showed rs2016520, rs67056409, rs1053049 of PPARD significantly decreased risk of glioma in the subgroup of age > 40 and astrocytoma (P < 0.05). For male, PPARD rs1053049 had a strong relationship with glioma risk in allele (P = 0.041), dominant (P = 0.040) and additive (P = 0.040) models. The effect of PPARG rs2920503 on glioma risk was related to glioma grade (P < 0.05). MDR showed that a seven-locus model was the best polymorphisms interaction pattern. Moreover, surgery and chemotherapy had strongly impact on overall survival and progression free survival of glioma patients. Our findings suggested that PPARD and PPARG polymorphisms were associated with glioma risk and prognosis in the Chinese Han population, and further studies are need to confirm our results.
Collapse
Affiliation(s)
- Xiaoying Ding
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xinsheng Han
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Haozheng Yuan
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
10
|
Zhu Y, You J, Xu C, Gu X. Pathogenicity of the homoplasmic C3275T, T4363C and A8343G variant requires confirmation. Gene 2018; 680:97-98. [PMID: 30194987 DOI: 10.1016/j.gene.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Ye Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child HealthCare Hospital, Yangzhou, Jiangsu 225001, China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Xiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
11
|
Kim M, Kim M, Yoo HJ, Sun Y, Lee SH, Lee JH. PPARD rs7770619 polymorphism in a Korean population: Association with plasma malondialdehyde and impaired fasting glucose or newly diagnosed type 2 diabetes. Diab Vasc Dis Res 2018; 15:360-363. [PMID: 29776318 DOI: 10.1177/1479164118776414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Both the peroxisome proliferator-activated receptor delta gene ( PPARD) and malondialdehyde plasma concentrations may play a role in impaired glucose metabolism. The aim of this work was to determine whether PPARD is a candidate gene for impaired fasting glucose or type 2 diabetes and whether a particular genetic variant shows association with plasma malondialdehyde levels. Among the 10 single-nucleotide polymorphisms that were most strongly associated with malondialdehyde, the rs7770619 polymorphism in PPARD was analysed in 1798 subjects with normal fasting glucose, impaired fasting glucose and newly diagnosed type 2 diabetes. Our data demonstrate that the CT genotype of the rs7770619 is associated with a lower risk of impaired fasting glucose or type 2 diabetes together with lower plasma levels of malondialdehyde in both groups ( p < 0.05). Glucose levels and the rs7770619 are significantly associated in individuals with normal fasting glucose, and a trend towards an association between glucose levels and rs7770619 is also observed in individuals with impaired fasting glucose or type 2 diabetes. In conclusion, PPARD rs7770619 is a novel candidate variant for impaired fasting glucose and type 2 diabetes and shows association with malondialdehyde levels. Future work is required to understand the mechanisms for these associations and the clinical implications of our findings.
Collapse
Affiliation(s)
- Minjoo Kim
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Minkyung Kim
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Hye Jin Yoo
- 2 Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Yao Sun
- 3 Department of Science for Aging, Graduate School of Yonsei University, Seoul, Korea
| | - Sang-Hyun Lee
- 4 Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Jong Ho Lee
- 1 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
- 2 Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
- 5 National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mitochondrial tRNA Leu(UUR) C3275T, tRNA Gln T4363C and tRNA Lys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 2017; 642:299-306. [PMID: 29155328 DOI: 10.1016/j.gene.2017.11.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNALeu(UUR), whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNAGln, furthermore, the A8343G mutation occurred at the very conserved position of tRNALys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China.
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Cai-Juan Zhang
- Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|