1
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Castro CCM, Silva SP, Rabelo LN, Queiroz JPG, Campos LD, Silva LC, Fiuza FP. Age, Education Years, and Biochemical Factors Are Associated with Selective Neuronal Changes in the Elderly Hippocampus. Cells 2022; 11:cells11244033. [PMID: 36552799 PMCID: PMC9777473 DOI: 10.3390/cells11244033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Brain aging involves regional alterations of specific cellular subpopulations in the human hippocampus: a network hub for memory consolidation. The present study investigates whether age, sex, education years, and the concentration of neuropathological and inflammatory proteins influence neuronal-type marker expression in the elderly hippocampus. We analyzed the digital images (1 µm/pixel) of postmortem hippocampal sections from 19 non-demented individuals (from 78 to 99 years). This material was obtained from the "Aging Dementia and TBI Study" open database. Brain samples were processed through in situ hybridization (ISH) for the immunodetection of VGLUT1 (glutamatergic transporter) and GAT1 (GABAergic transporter) and mRNAs and Luminex protein quantifications. After image acquisition, we delineated the dentate gyrus, CA 3/2, and CA1 hippocampal subdivisions. Then, we estimated the area fraction in which the ISH markers were expressed. Increased VGLUT1 was observed in multiple hippocampal subfields at late ages. This glutamatergic marker is positively correlated with beta-amyloid and tau proteins and negatively correlated with interleukin-7 levels. Additionally, education years are positively correlated with GAT1 in the hippocampus of elderly women. This GABAergic marker expression is associated with interferon-gamma and brain-derived neurotrophic factor levels. These associations can help to explain how hippocampal sub-regions and neurotransmitter systems undergo distinct physiological changes during normal aging.
Collapse
|
3
|
Shilling-Scrivo K, Mittelstadt J, Kanold PO. Altered Response Dynamics and Increased Population Correlation to Tonal Stimuli Embedded in Noise in Aging Auditory Cortex. J Neurosci 2021; 41:9650-9668. [PMID: 34611028 PMCID: PMC8612470 DOI: 10.1523/jneurosci.0839-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a chronic health condition that affects one-third of the world population. One hallmark of presbycusis is a difficulty hearing in noisy environments. Presbycusis can be separated into two components: alterations of peripheral mechanotransduction of sound in the cochlea and central alterations of auditory processing areas of the brain. Although the effects of the aging cochlea in hearing loss have been well studied, the role of the aging brain in hearing loss is less well understood. Therefore, to examine how age-related central processing changes affect hearing in noisy environments, we used a mouse model (Thy1-GCaMP6s X CBA) that has excellent peripheral hearing in old age. We used in vivo two-photon Ca2+ imaging to measure the responses of neuronal populations in auditory cortex (ACtx) of adult (2-6 months, nine male, six female, 4180 neurons) and aging mice (15-17 months, six male, three female, 1055 neurons) while listening to tones in noisy backgrounds. We found that ACtx neurons in aging mice showed larger responses to tones and have less suppressed responses consistent with reduced inhibition. Aging neurons also showed less sensitivity to temporal changes. Population analysis showed that neurons in aging mice showed higher pairwise activity correlations and showed a reduced diversity in responses to sound stimuli. Using neural decoding techniques, we show a loss of information in neuronal populations in the aging brain. Thus, aging not only affects the responses of single neurons but also affects how these neurons jointly represent stimuli.SIGNIFICANCE STATEMENT Aging results in hearing deficits particularly under challenging listening conditions. We show that auditory cortex contains distinct subpopulations of excitatory neurons that preferentially encode different stimulus features and that aging selectively reduces certain subpopulations. We also show that aging increases correlated activity between neurons and thereby reduces the response diversity in auditory cortex. The loss of population response diversity leads to a decrease of stimulus information and deficits in sound encoding, especially in noisy backgrounds. Future work determining the identities of circuits affected by aging could provide new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kelson Shilling-Scrivo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Jonah Mittelstadt
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
4
|
Ethiraj J, Palpagama TH, Turner C, van der Werf B, Waldvogel HJ, Faull RLM, Kwakowsky A. The effect of age and sex on the expression of GABA signaling components in the human hippocampus and entorhinal cortex. Sci Rep 2021; 11:21470. [PMID: 34728681 PMCID: PMC8563768 DOI: 10.1038/s41598-021-00792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. The GABA signaling system in the brain is comprised of GABA synthesizing enzymes, transporters, GABAA and GABAB receptors (GABAAR and GABABR). Alterations in the expression of these signaling components have been observed in several brain regions throughout aging and between sexes in various animal models. The hippocampus is the memory centre of the brain and is impaired in several age-related disorders. It is composed of two main regions: the Cornu Ammonis (CA1-4) and the Dentate Gyrus (DG), which are interconnected with the Entorhinal Cortex (ECx). The age- and sex-specific changes of GABA signaling components in these regions of the human brain have not been examined. This study is the first to determine the effect of age and sex on the expression of GABA signaling components-GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunits and the GABA synthesizing enzymes GAD 65/67-in the ECx, and the CA1 and DG regions of the human hippocampus using Western blotting. No significant differences were found in GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunit and GAD65/76 expression levels in the ECx, CA1 and DG regions between the younger and older age groups for both sexes. However, we observed a significant negative correlation between age and GABAAR α1subunit level in the CA1 region for females; significant negative correlation between age and GABAAR β1, β3 and γ2 subunit expression in the DG region for males. In females a significant positive correlation was found between age and GABAAR γ2 subunit expression in the ECx and GABABR R2 subunit expression in the CA1 region. The results indicate that age and sex do not affect the expression of GAD 65/67. In conclusion, our results show age- and sex-related GABAA/BR subunit alterations in the ECx and hippocampus that might significantly influence GABAergic neurotransmission and underlie disease susceptibility and progression.
Collapse
Affiliation(s)
- Jayarjun Ethiraj
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani Hansika Palpagama
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand ,grid.414055.10000 0000 9027 2851Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Bert van der Werf
- grid.9654.e0000 0004 0372 3343Department of Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
GABA levels in ventral visual cortex decline with age and are associated with neural distinctiveness. Neurobiol Aging 2021; 102:170-177. [PMID: 33770531 DOI: 10.1016/j.neurobiolaging.2021.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023]
Abstract
Age-related neural dedifferentiation-a decline in the distinctiveness of neural representations in the aging brain-has been associated with age-related declines in cognitive abilities. But why does neural distinctiveness decline with age? Based on prior work in nonhuman primates and more recent work in humans, we hypothesized that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) declines with age and is associated with neural dedifferentiation in older adults. To test this hypothesis, we used magnetic resonance spectroscopy (MRS) to measure GABA and functional MRI (fMRI) to measure neural distinctiveness in the ventral visual cortex in a set of older and younger participants. Relative to younger adults, older adults exhibited lower GABA levels and less distinct activation patterns for faces and houses in the ventral visual cortex. Furthermore, individual differences in GABA within older adults positively predicted individual differences in neural distinctiveness. These results provide novel support for the view that age-related reductions of GABA contribute to age-related reductions in neural distinctiveness (i.e., neural dedifferentiation) in the human ventral visual cortex.
Collapse
|
6
|
Wang X, Chen K, Pan M, Ge W, He Z. Comparison of proteome alterations during aging in the temporal lobe of humans and rhesus macaques. Exp Brain Res 2020; 238:1963-1976. [PMID: 32572507 DOI: 10.1007/s00221-020-05855-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Rhesus macaques are widely used as animal models for studies of the nervous system; however, it is unknown whether the alterations in the protein profile of the brain during aging are conserved between humans and rhesus macaques. In this study, temporal cortex samples from old and young humans (84 vs. 34 years, respectively) or rhesus macaques (20 vs. 6 years, respectively) were subjected to tandem mass tag-labeled proteomic analysis followed by bioinformatic analysis. A total of 3861 homologous pairs of proteins were identified during the aging process. The conservatively upregulated proteins (n = 190) were involved mainly in extracellular matrix (ECM), focal adhesion and coagulation; while, the conservatively downregulated proteins (n = 56) were enriched in ribosome. Network analysis showed that these conservatively regulated proteins interacted with each other with respect to protein synthesis and cytoskeleton-ECM connection. Many proteins in the focal adhesion, blood clotting, complement and coagulation, and cytoplasmic ribosomal protein pathways were regulated in the same direction in human and macaque; while, proteins involved in oligodendrocyte specification and differentiation pathways were downregulated during human aging, and many proteins in the electron transport chain pathway showed differences in the altered expression profiles. Data are available via ProteomeXchange with identifier PXD013597. Our findings suggest similarities in some changes in brain protein profiles during aging both in humans and macaques, although other changes are unique to only one of these species.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kang Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
7
|
Abuleil D, McCulloch DL, Thompson B. Older Adults Exhibit Greater Visual Cortex Inhibition and Reduced Visual Cortex Plasticity Compared to Younger Adults. Front Neurosci 2019; 13:607. [PMID: 31249506 PMCID: PMC6582629 DOI: 10.3389/fnins.2019.00607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence indicates that inhibition within the visual cortex is greater in older than young adults. Increased inhibition has been associated with reduced visual cortex plasticity in animal models. We investigated whether age-related increases in human visual cortex inhibition occur in conjunction with reduced visual cortex plasticity. Visual cortex inhibition was measured psychophysically using binocular rivalry alternation rates (AR) for dichoptic gratings. Slower ARs are associated with a greater concentration of the inhibitory neurotransmitter GABA within the human visual cortex. Visual cortex plasticity was measured using an established paradigm for induction of long-term potentiation (LTP) -like increases in visually evoked potential (VEP) amplitude. Following rapid visual stimulation, greater increases in VEP amplitude indicate greater visual cortex plasticity. The study involved two groups; young (18-40 years, n = 29) and older adults (60-80 years, n = 18). VEPs were recorded for a 1 Hz onset/offset checkerboard stimulus before and after 9 Hz visual stimulation with the same stimulus. ARs were slower in older than young adults. In contrast to most previous studies, VEP amplitudes were significantly reduced following the rapid visual stimulation for young adults; older adult VEP amplitudes were unaffected. Our AR results replicate previous observations of increased visual cortex inhibition in the older adults. Rapid visual stimulation significantly altered VEP amplitude in young adults, albeit in the opposite direction than predicted. VEP amplitudes did not change in older adults suggesting an association between increased inhibition and reduced plasticity within the human visual cortex.
Collapse
Affiliation(s)
- Dania Abuleil
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
8
|
de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. G i/o-Protein Coupled Receptors in the Aging Brain. Front Aging Neurosci 2019; 11:89. [PMID: 31105551 PMCID: PMC6492497 DOI: 10.3389/fnagi.2019.00089] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.
Collapse
Affiliation(s)
- Patrícia G de Oliveira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Marta L S Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - António J Amaro
- School of Health Sciences (ESSUA), Universidade de Aveiro, Aveiro, Portugal
| | - Roberto A Dias
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED) and The Discovery CTR, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ 2019; 10:5. [PMID: 30642393 PMCID: PMC6332906 DOI: 10.1186/s13293-018-0214-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, β3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and β3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.
Collapse
Affiliation(s)
- Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Mismatched summation mechanisms in older adults for the perception of small moving stimuli. Vision Res 2018; 142:52-57. [DOI: 10.1016/j.visres.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
11
|
Noda Y, Zomorrodi R, Cash RFH, Barr MS, Farzan F, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Characterization of the influence of age on GABA A and glutamatergic mediated functions in the dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Aging (Albany NY) 2017; 9:556-572. [PMID: 28209926 PMCID: PMC5361681 DOI: 10.18632/aging.101178] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/09/2017] [Indexed: 11/27/2022]
Abstract
Gamma-aminobutyric acid (GABA)ergic and glutamatergic neurotransmissions in the prefrontal cortex decreases with age. Further, cognitive function mediated through the dorsolateral prefrontal cortex (DLPFC) also declines with age. Although neuroimaging studies have demonstrated decreased levels of these substances, direct neurophysiological data investigating the effect of aging in the DLPFC in human subjects is lacking. The advent of transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) has allowed for the assessment of functional neurotransmission in vivo. In the present study, we examined short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in a group of older adults (> 60 yrs) to evaluate the strength of GABAA and glutamate-mediated neurotransmission in the DLPFC, compared to younger adults (18-59 yrs). Older adults showed an increase of amplitude of N100 by the SICI paradigm, while N45 amplitude was increased and N100 amplitude was decreased by ICF. Moreover, these modulations significantly correlated with age. Our findings provide evidence for age-related alterations of excitatory and inhibitory functions in the prefrontal cortex in healthy adults. Future studies may aim to explore these neurophysiological relationships in the DLPFC in pathological forms of aging that affect cortical functioning such as mild cognitive impairment and Alzheimer's disease.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred, Melbourne 3004, Australia
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, M5T 2S8, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
12
|
Changes in GABAergic markers accompany degradation of neuronal function in the primary visual cortex of senescent rats. Sci Rep 2017; 7:14897. [PMID: 29097694 PMCID: PMC5668371 DOI: 10.1038/s41598-017-15006-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have reported age-dependent degradation of neuronal function in the visual cortex and have attributed this functional decline to weakened intracortical inhibition, especially GABAergic inhibition. However, whether this type of functional decline is linked to compromised GABAergic inhibition has not been fully confirmed. Here, we compared the neuronal response properties and markers of GABAergic inhibition in the primary visual cortex (V1) of young adult and senescent rats. Compared with those of young adult rats, old rats’ V1 neurons exhibited significantly increased visually evoked responses and spontaneous activity, a decreased signal-to-noise ratio and reduced response selectivity for the stimulus orientation and motion direction. Additionally, the ratio of GABA-positive neurons to total cortical neurons in old rats was significantly decreased compared with that in young rats. Expression of the key GABA-synthesizing enzyme GAD67 was significantly lower in old rats than in young rats, although GAD65 expression showed a marginal difference between the two age groups. Further, expression of an important GABAA receptor subunit, GABAAR α1, was significantly attenuated in old rats relative to young ones. These results demonstrate that ageing may result in decreased GABAergic inhibition in the visual cortex and that this decrease in GABAergic inhibition accompanies neuronal function degradation.
Collapse
|
13
|
Pitchaimuthu K, Wu QZ, Carter O, Nguyen BN, Ahn S, Egan GF, McKendrick AM. Occipital GABA levels in older adults and their relationship to visual perceptual suppression. Sci Rep 2017; 7:14231. [PMID: 29079815 PMCID: PMC5660206 DOI: 10.1038/s41598-017-14577-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Several studies have attributed certain visual perceptual alterations in older adults to a likely decrease in GABA (Gamma Aminobutyric Acid) concentration in visual cortex, an assumption based on findings in aged non-human primates. However, to our knowledge, there is no direct evidence for an age-related decrease in GABA concentration in human visual cortex. Here, we estimated visual cortical GABA levels and Glx (combined estimate of glutamate and glutamine) levels using magnetic resonance spectroscopy. We also measured performance for two visual tasks that are hypothesised to be mediated, at least in part, by GABAergic inhibition: spatial suppression of motion and binocular rivalry. Our results show increased visual cortical GABA levels, and reduced Glx levels, in older adults. Perceptual performance differed between younger and older groups for both tasks. When subjects of all ages were combined, visual cortical GABA levels but not Glx levels correlated with perceptual performance. No relationship was found between perception and GABA levels in dorsolateral prefrontal cortex. Perceptual measures and GABA were not correlated when either age group was considered separately. Our results challenge current assumptions regarding neurobiological changes that occur within the aging human visual cortex and their association with certain age-related changes in visual perception.
Collapse
Affiliation(s)
- Kabilan Pitchaimuthu
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi-Zhu Wu
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Olivia Carter
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sinyeob Ahn
- Magnetic Resonance, Siemens Medical Solutions USA Inc, San Francisco, CA, 94116, USA
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
15
|
Abstract
Structural plasticity of the axon initial segment (AIS), the site of action potential initiation, is observed as part of the normal early development of the cortex, as well as in association with injury and disease. Here, we show that structural AIS plasticity also occurs with normal aging in adult marmosets. Immunohistochemical techniques were used to reveal the extent of the AIS of layer 2/3A pyramidal cells in 8 neocortical areas. We found that the AIS length varied significantly between areas in young adult (2-3 years old) marmosets, with neurons in frontal area 14C having the longest AIS, and those in the primary visual cortex the shortest. Similar interareal differences were observed in aged (12-14 year old) monkeys, but the AIS was significantly shortened in many areas, relative to the corresponding length in young adults. Shortening of the AIS is likely to represent a compensatory response to changes in the excitation-inhibition balance, associated with the loss of GABAergic interneurons in the aged cortex.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia.
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia
| |
Collapse
|