1
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Pilala KM, Papadimitriou MA, Panoutsopoulou K, Barbarigos P, Levis P, Kotronopoulos G, Stravodimos K, Scorilas A, Avgeris M. Epigenetic regulation of MIR145 core promoter controls miR-143/145 cluster in bladder cancer progression and treatment outcome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:311-322. [PMID: 36320325 PMCID: PMC9614648 DOI: 10.1016/j.omtn.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Owing to its highly heterogeneous molecular landscape, bladder cancer (BlCa) is still characterized by non-personalized treatment and lifelong surveillance. Motivated by our previous findings on miR-143/145 value in disease prognosis, we have studied the underlying epigenetic regulation of the miR-143/145 cluster in BlCa. Expression and DNA methylation of miR-143/145 cluster were analyzed in our screening (n = 162) and The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA; n = 412) cohorts. Survival analysis was performed using tumor relapse and progression as clinical endpoints for non-muscle-invasive bladder cancer (NMIBC; TaT1), while disease progression and patients' death were used for muscle-invasive bladder cancer (MIBC; T2-T4). TCGA-BLCA served as validation cohort. Bootstrap analysis was carried out for internal validation, while decision curve analysis was used to evaluate clinical benefit. TCGA-BLCA and screening cohorts highlighted MIR145 core promoter as the pivotal, epigenetic regulatory region on cluster's expression. Lower methylation of MIR145 core promoter was associated with aggressive disease phenotype, higher risk for NMIBC short-term progression, and poor MIBC survival. MIR145 methylation-fitted multivariate models with established disease markers clearly enhanced patients' risk stratification and prediction of treatment outcome. MIR145 core promoter methylation was identified as a potent epigenetic regulator of miR-143/145 cluster, supporting modern personalized risk stratification and management in BlCa.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Petros Barbarigos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece,Corresponding author Andreas Scorilas, Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece.
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece,Laboratory of Clinical Biochemistry – Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children’s Hospital, 11527 Athens, Greece,Corresponding author Dr. Margaritis Avgeris, Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, "P. & A. Kyriakou" Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 24 Mesogeion Ave, 11527 Athens, Greece.
| |
Collapse
|
4
|
Falco M, Tammaro C, Takeuchi T, Cossu AM, Scafuro G, Zappavigna S, Itro A, Addeo R, Scrima M, Lombardi A, Ricciardiello F, Irace C, Caraglia M, Misso G. Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem. Cancers (Basel) 2022; 14:1716. [PMID: 35406495 PMCID: PMC8997012 DOI: 10.3390/cancers14071716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Laryngeal squamous cell cancer (LSCC) accounts for almost 25-30% of all head and neck squamous cell cancers and is clustered according to the affected districts, as this determines distinct tendency to recur and metastasize. A major role for numerous genetic alterations in driving the onset and progression of this neoplasm is emerging. However, major efforts are still required for the identification of molecular markers useful for both early diagnosis and prognostic definition of LSCC that is still characterized by significant morbidity and mortality. Non-coding RNAs appear the most promising as they circulate in all the biological fluids allowing liquid biopsy determination, as well as due to their quick and characteristic modulation useful for non-invasive detection and monitoring of cancer. Other critical aspects are related to recent progress in circulating tumor cells and DNA detection, in metastatic status and chemo-refractoriness prediction, and in the functional interaction of LSCC with chronic inflammation and innate immunity. We review all these aspects taking into account the progress of the technologies in the field of next generation sequencing.
Collapse
Affiliation(s)
- Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Giuseppe Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | - Annalisa Itro
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA-2NORD, 80020 Naples, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| | | | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.T.); (T.T.); (A.M.C.); (G.S.); (S.Z.); (A.L.); (M.C.)
| |
Collapse
|
5
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
He W, Gong S, Wang X, Dong X, Cheng H. DNA methylation integratedly modulates the expression of Pit-Oct-Unt transcription factors in esophageal squamous cell carcinoma. J Cancer 2021; 12:1634-1643. [PMID: 33613750 PMCID: PMC7890322 DOI: 10.7150/jca.49231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dysregulation of Pit-Oct-Unc family transcription factors has been implicated in esophageal squamous cell carcinoma (ESCC). In this study, we evaluated the expression and promoter methylation status of Octamer (OCT) transcription factor genes in human ESCC clinical specimens to investigate the mechanism underlying this observation along with the clinical significance. Methods: Total DNA or RNA was extracted from ESCC tissue specimens and the mRNA level of genes encoding the transcription factors OCT1, OCT2, OCT3/OCT4, OCT5, OCT7, OCT9, and OCT11 were evaluated by quantitative PCR. The DNA methylation status of gene promoters was assessed by bisulfite pyrosequencing and next-generation sequencing. The relationship between the expression of these transcription factors and ESCC proliferation was investigated in vitro and in vivo with the colony formation assay and a mouse xenograft tumor model, respectively. We also examined the correlation between OCT gene expression and promoter methylation and clinicopathologic characteristics of ESCC. Results:OCT1 was upregulated whereas OCT4, OCT6, and OCT11 were downregulated in ESCC compared to non-tumor tissue. OCT2, OCT7, and OCT9 were undetected in all samples. OCT1, OCT6, and OCT11 levels were negatively correlated with the methylation of their respective promoters, but there was no relationship between OCT4 expression and promoter methylation status. Conclusion: Changes in promoter methylation rate underlie the observed alterations in OCT1, OCT6, and OCT11 expression in ESCC, whereas another mechanism is likely responsible for the dysregulation of OCT4.
Collapse
Affiliation(s)
- Wei He
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Xin Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Xinhua Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan province, China
| | - Hua Cheng
- Department of Oncology, Xiayi Hospital of Traditional Chinese Medicine. Shangqiu 476400, Henan province, China
| |
Collapse
|
8
|
Xu K, Chen B, Li B, Li C, Zhang Y, Jiang N, Lang B. DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer. Aging (Albany NY) 2020; 12:23668-23683. [PMID: 33221743 PMCID: PMC7762500 DOI: 10.18632/aging.103820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
The role of DNA methyltransferase 3B (DNMT3B) in tumorigenesis and development has been widely recognized; however, the mechanism underlying its action remains unclear. Considering its function in de novo methylation, we aimed to investigate whether DNMT3B plays its role via microRNA (miR)-34a promoter methylation in bladder cancer. We found that DNMT3B expression was low in 10 bladder cancer tissues and high in 20 bladder cancer tissues. miR-34a expression was higher in bladder cancer tissues with low expression of DNMT3B than that in bladder cancer tissues with high expression of DNMT3B. The level of miR-34a was negatively correlated with the level of DNMT3B. The methylation ratio of the miR-34a promoter was positively correlated with the level of DNMT3B and negatively correlated with the level of miR-34a. DNMT3B knockdown increased the expression of miR-34a and the transcriptional activity of the miR-34a promoter, while decreasing miR-34a promoter methylation. DNMT3B knockdown inhibited migration and invasion, while decreasing the protein levels of hepatocyte nuclear factor 4 gamma and Notch1 which are downstream targets of miR-34a. These inhibitory effects of DNMT3B were mitigated by the miR-34a inhibitor. In conclusion, DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer.
Collapse
Affiliation(s)
- Kai Xu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Binshen Chen
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, People's Republic of China
| |
Collapse
|
9
|
“Star” miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release 2020; 326:615-627. [DOI: 10.1016/j.jconrel.2020.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023]
|
10
|
Bai Y, Hou J, Wang X, Geng L, Jia X, Xiang L, Nan K. Circ_0000218 plays a carcinogenic role in laryngeal cancer through regulating microRNA-139-3p/Smad3 axis. Pathol Res Pract 2020; 216:153103. [PMID: 32825967 DOI: 10.1016/j.prp.2020.153103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) accounts for about 85%-90% of all cases of laryngeal cancer. So far, the role and molecular mechanism of circular RNA 0,000,218 (circ_0000218)/microRNA (miR)-139-3p in laryngeal cancer are not clear. The present study aimed to investigate the role and regulatory mechanism of circ_0000218/miR-139-3p in laryngeal cancerin vitro and in vivo. METHODS quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the expression of circ_0000218/miR-139-3p in LSCC cells. Dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm binding sites between miR-139-3p and smad family member 3 (Smad3), and circ_0000218 and miR-139-3p. Cell Counting Kit-8 (CCK-8) and cell apoptosis analysis were used to detect cell viability and apoptosis. Xenograft experiment was performed to show in vivo effect of circ_0000218/miR-139-3p on the growth of LSCC. RESULTS Circ_0000218 was highly expressed in LSCC cells. miR-139-3p, lower expressed in LSCC cells, was negatively regulated by circ_0000218 in LSCC cells. Besides, the findings suggested that circ_0000218 silencing inhibited the LSCC cell viability and promoted apoptosis by negatively regulating miR-139-3p expression. Furthermore, the data indicated that miR-139-3p inhibited the viability of LSCC cells and promoted apoptosis, and these effects were reversed by Smad3 over-expression. In addition, the in vivo effects of circ_0000218/miR-139-3p on LSCC were consistent with the in vitro study. CONCLUSIONS circ_0000218 inhibition inhibited the growth of LSCC by targeting miR-139-3p/Smad3 axis. Our present study provided a new target for laryngeal cancer treatment.
Collapse
Affiliation(s)
- Yiyang Bai
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Hou
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao Wang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Luying Geng
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaohui Jia
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Luochengling Xiang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kejun Nan
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Oncology Hospital, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710075, China.
| |
Collapse
|
11
|
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 2018; 8:203-212. [PMID: 29161231 DOI: 10.1515/bmc-2017-0024] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded RNAs of 18-25 nucleotides that regulate gene expression at the post-transcriptional level. They are involved in many physiological and pathological processes, including cell proliferation, apoptosis, development and carcinogenesis. Because of the central role of miRNAs in the regulation of gene expression, their expression needs to be tightly controlled. Here, we summarize the different mechanisms of epigenetic regulation of miRNAs, with a particular focus on DNA methylation and histone modification.
Collapse
|
12
|
Fu Y, Li C, Luo Y, Li L, Liu J, Gui R. Silencing of Long Non-coding RNA MIAT Sensitizes Lung Cancer Cells to Gefitinib by Epigenetically Regulating miR-34a. Front Pharmacol 2018; 9:82. [PMID: 29487526 PMCID: PMC5816758 DOI: 10.3389/fphar.2018.00082] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) was recently identified as oncogene in several cancers. However, the role of MIAT on acquired resistance in lung cancer and the underlying mechanisms remain unclear. Here, we showed that the expression of MIAT in lung cancer tissues was upregulated compared with adjacent tissues. LncRNA MIAT expression was associated with tumor size, lymph node metastasis, distant metastasis and TNM stage. Univariate analysis and multivariate analysis revealed that the lncRNA MIAT to be an independent factor for predicating the prognosis of lung cancer patients. Low lncRNA MIAT have longer overall survival time and progression-free survival time than patients with high lncRNA MIAT expression. Moreover, the knockdown of MIAT significantly sensitized PC9 and gefitinib-resistant PC9 cells to gefitinib in vitro and in vivo, and increased the expression of miR-34a and inactivated PI3K/Akt signaling. MIAT interacted with miR-34a and epigenetically controlled the miR-34a expression by hyper-methylating its promotor. Taken together, our findings demonstrated that knockdown of MIAT by siRNA enhances lung cancer cells to gefitinib through the PI3K/Akt signaling pathway by epigenetically regulating miR-34a. Thus, MIAT may be a useful prognostic marker and therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Yunfeng Fu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chengyuan Li
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanwei Luo
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Li
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Liu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Misawa K, Mochizuki D, Imai A, Mima M, Misawa Y, Mineta H. Analysis of Site-Specific Methylation of Tumor-Related Genes in Head and Neck Cancer: Potential Utility as Biomarkers for Prognosis. Cancers (Basel) 2018; 10:cancers10010027. [PMID: 29361757 PMCID: PMC5789377 DOI: 10.3390/cancers10010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Clarifying the epigenetic regulation of tumor-related genes (TRGs) can provide insights into the mechanisms of tumorigenesis and the risk for disease recurrence in HPV-negative head and neck cancers, originating in the hypopharynx, larynx, and oral cavity. We analyzed the methylation status of the promoters of 30 TRGs in 178 HPV-negative head and neck cancer patients using a quantitative methylation-specific PCR. Promoter methylation was correlated with various clinical characteristics and patient survival. The mean number of methylated TRGs was 14.2 (range, 2-25). In the multivariate Cox proportional hazards analysis, the methylation of COL1A2 and VEGFR1 was associated with poor survival for hypopharyngeal cancer, with hazard ratios: 3.19; p = 0.009 and 3.07; p = 0.014, respectively. The methylation of p16 and COL1A2 were independent prognostic factors for poor survival in laryngeal cancer (hazard ratio: 4.55; p = 0.013 and 3.12; p = 0.035, respectively). In patients with oral cancer, the methylation of TAC1 and SSTR1 best correlated with poor survival (hazard ratio: 4.29; p = 0.005 and 5.38; p = 0.029, respectively). Our findings suggest that methylation status of TRGs could serve as important site-specific biomarkers for prediction of clinical outcomes in patients with HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| |
Collapse
|
14
|
Kwon H, Song K, Han C, Zhang J, Lu L, Chen W, Wu T. Epigenetic Silencing of miRNA-34a in Human Cholangiocarcinoma via EZH2 and DNA Methylation: Impact on Regulation of Notch Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2288-2299. [PMID: 28923203 DOI: 10.1016/j.ajpath.2017.06.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Aberrant expression and regulation of miRNAs have been implicated in multiple stages of tumorigenic processes. The current study was designed to explore the biological function and epigenetic regulation of miR-34a in human cholangiocarcinoma (CCA). Our data show that the expression of miR-34a is decreased significantly in CCA cells compared with non-neoplastic biliary epithelial cells. Forced overexpression of miR-34a in CCA cells inhibited their proliferation and clonogenic capacity in vitro, and suppressed tumor xenograft growth in severe combined immunodeficiency mice. We identified three key components of the Notch pathway, Notch1, Notch2, and Jagged 1, as direct targets of miR-34a. Our further studies show that down-regulation of miR-34a is caused by Enhancer of zeste homolog 2 (EZH2)-mediated H3 lysine 27 trimethylation as well as DNA methylation. Accordingly, treatment with the EZH2 inhibitor, selective S-adenosyl-methionine-competitive small-molecule (GSK126), or the DNA methylation inhibitor, 5-Aza-2'-deoxycytidine, partially restored miR-34a levels in human CCA cells. Immunohistochemical staining and Western blot analyses showed increased EZH2 expression in human CCA tissues and cell lines. We observed that GSK126 significantly reduced CCA cell growth in vitro and intrahepatic metastasis in vivo. Our findings provide novel evidence that miR-34a expression is silenced epigenetically by EZH2 and DNA methylation, which promotes CCA cell growth through activation of the Notch pathway. Consequently, these signaling cascades may represent potential therapeutic targets for effective treatment of human CCA.
Collapse
Affiliation(s)
- Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lu Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
15
|
Fei Y, Guo P, Wang F, Li H, Lei Y, Li W, Xun X, Lu F. Identification of miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 16:4179-4186. [DOI: 10.3892/mmr.2017.7123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
16
|
Abstract
microRNAs (miRNAs) and DNA methylation are the 2 epigenetic modifications that have emerged in recent years as the most critical players in the regulation of gene expression. Compelling evidence has indicated the roles of miRNAs and DNA methylation in modulating cellular transformation and tumorigenesis. miRNAs act as negative regulators of gene expression and are involved in the regulation of both physiologic conditions and during diseases, such as cancer, inflammatory diseases, and psychiatric disorders, among others. Meanwhile, aberrant DNA methylation manifests in both global genome changes and in localized gene promoter changes, which influences the transcription of cancer genes. In this review, we described the mutual regulation of miRNAs and DNA methylation in human cancers. miRNAs regulate DNA methylation by targeting DNA methyltransferases or methylation-related proteins. On the other hand, both hyper- and hypo-methylation of miRNAs occur frequently in human cancers and represent a new level of complexity in gene regulation. Therefore, understanding the mechanisms underlying the mutual regulation of miRNAs and DNA methylation may provide helpful insights in the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- Sumei Wang
- a Department of Oncology , Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, Guangdong , P. R. China.,b Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Wanyin Wu
- a Department of Oncology , Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, Guangdong , P. R. China
| | - Francois X Claret
- b Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Experimental Therapeutics Academic Program and Cancer Biology Program , The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| |
Collapse
|