1
|
Biddie SC, Weykopf G, Hird EF, Friman ET, Bickmore WA. DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants. Genome Biol 2024; 25:208. [PMID: 39107801 PMCID: PMC11304670 DOI: 10.1186/s13059-024-03352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. RESULTS We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER-Functional SNV IdeNtification using DNase footprints and eRNA. CONCLUSIONS We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.
Collapse
Affiliation(s)
- Simon C Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- NHS Lothian, Edinburgh, UK.
| | - Giovanna Weykopf
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Avery CN, Russell ND, Steely CJ, Hersh AO, Bohnsack JF, Prahalad S, Jorde LB. Shared genomic segments analysis identifies MHC class I and class III molecules as genetic risk factors for juvenile idiopathic arthritis. HGG ADVANCES 2024; 5:100277. [PMID: 38369753 PMCID: PMC10918567 DOI: 10.1016/j.xhgg.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a complex rheumatic disease encompassing several clinically defined subtypes of varying severity. The etiology of JIA remains largely unknown, but genome-wide association studies (GWASs) have identified up to 22 genes associated with JIA susceptibility, including a well-established association with HLA-DRB1. Continued investigation of heritable risk factors has been hindered by disease heterogeneity and low disease prevalence. In this study, we utilized shared genomic segments (SGS) analysis on whole-genome sequencing of 40 cases from 12 multi-generational pedigrees significantly enriched for JIA. Subsets of cases are connected by a common ancestor in large extended pedigrees, increasing the power to identify disease-associated loci. SGS analysis identifies genomic segments shared among disease cases that are likely identical by descent and anchored by a disease locus. This approach revealed statistically significant signals for major histocompatibility complex (MHC) class I and class III alleles, particularly HLA-A∗02:01, which was observed at a high frequency among cases. Furthermore, we identified an additional risk locus at 12q23.2-23.3, containing genes primarily expressed by naive B cells, natural killer cells, and monocytes. The recognition of additional risk beyond HLA-DRB1 provides a new perspective on immune cell dynamics in JIA. These findings contribute to our understanding of JIA and may guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Cecile N Avery
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Nicole D Russell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Cody J Steely
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aimee O Hersh
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - John F Bohnsack
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Waheed N, Naseer M, Haider N, Suleman S, Ullah A. Whole exome sequencing identified a novel splice donor site variant in interleukin 2 receptor alpha chain. Immunogenetics 2023; 75:71-79. [PMID: 36195682 DOI: 10.1007/s00251-022-01278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Interleukin 2 receptor alpha chain (IL-2Rα or CD25) deficiency (OMIM #606367) is an immune dysregulation disorder segregating in autosomal recessive form. The disease is caused by biallelic variants in the IL-2Rα gene encoding IL-2Rα also known as CD25 protein. IL-2Rα combines with γ and β chains of interleukin 2 receptor to form a functional interleukin 2 receptor (IL-2R). In the present study, we identified a Pakistani family presenting a unique presentation of IL-2Rα deficiency. Clinical whole exome sequencing revealed a novel splice donor site variant (NM_001378789.1 (NP_001365718); c.64 + 1G > A) in the IL-2Rα gene. American College of Medical Genetics (ACMG) guidelines interpreted the identified variant as likely pathogenic. The IL-2Rα gene mutation usually presents with autoimmunity and immunodeficiency but in our patient, it presents with congenital diarrhea, metabolic crisis, and strong family history of death in infancy due to the similar complications. Her congenital diarrhea is attributed to autoimmunity in the form of autoimmune enteropathy and eczema. The laboratory findings revealed severe metabolic acidosis hypokalemia and elevated lactate and ammonia levels. This is a new presentation of IL-2Rα gene mutation. The present study highlights the importance of clinical whole exome sequencing in the correct diagnosis of congenital disorders. The study will also help clinical geneticists for genetic counseling and prevention of the disease in the affected family.
Collapse
Affiliation(s)
- Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Maryam Naseer
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Nighat Haider
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Sufyan Suleman
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Boytsov A, Abramov S, Aiusheeva AZ, Kasianova A, Baulin E, Kuznetsov I, Aulchenko Y, Kolmykov S, Yevshin I, Kolpakov F, Vorontsov I, Makeev V, Kulakovskiy I. ANANASTRA: annotation and enrichment analysis of allele-specific transcription factor binding at SNPs. Nucleic Acids Res 2022; 50:W51-W56. [PMID: 35446421 PMCID: PMC9252736 DOI: 10.1093/nar/gkac262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
We present ANANASTRA, https://ananastra.autosome.org, a web server for the identification and annotation of regulatory single-nucleotide polymorphisms (SNPs) with allele-specific binding events. ANANASTRA accepts a list of dbSNP IDs or a VCF file and reports allele-specific binding (ASB) sites of particular transcription factors or in specific cell types, highlighting those with ASBs significantly enriched at SNPs in the query list. ANANASTRA is built on top of a systematic analysis of allelic imbalance in ChIP-Seq experiments and performs the ASB enrichment test against background sets of SNPs found in the same source experiments as ASB sites but not displaying significant allelic imbalance. We illustrate ANANASTRA usage with selected case studies and expect that ANANASTRA will help to conduct the follow-up of GWAS in terms of establishing functional hypotheses and designing experimental verification.
Collapse
Affiliation(s)
- Alexandr Boytsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - Sergey Abramov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - Ariuna Z Aiusheeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Alexandra M Kasianova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russia
- Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Eugene Baulin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Ivan A Kuznetsov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Yurii S Aulchenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- PolyKnomics BV, ’s-Hertogenbosch, 5237 PA, Netherlands
| | - Semyon Kolmykov
- Sirius University of Science and Technology, Sochi, 354340, Russia
- Biosoft.Ru LLC, Novosibirsk, 630090, Russia
| | - Ivan Yevshin
- Sirius University of Science and Technology, Sochi, 354340, Russia
- Biosoft.Ru LLC, Novosibirsk, 630090, Russia
| | - Fedor Kolpakov
- Sirius University of Science and Technology, Sochi, 354340, Russia
- Federal Research Center for Information and Computational Technologies, Novosibirsk, 630090, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
5
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes. Front Immunol 2022; 13:886736. [PMID: 35603161 PMCID: PMC9114814 DOI: 10.3389/fimmu.2022.886736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops in the interplay between genetic and environmental factors. A majority of individuals who develop T1D have a HLA make up, that accounts for 50% of the genetic risk of disease. Besides these HLA haplotypes and the insulin region that importantly contribute to the heritable component, genome-wide association studies have identified many polymorphisms in over 60 non-HLA gene regions that also contribute to T1D susceptibility. Combining the risk genes in a score (T1D-GRS), significantly improved the prediction of disease progression in autoantibody positive individuals. Many of these minor-risk SNPs are associated with immune genes but how they influence the gene and protein expression and whether they cause functional changes on a cellular level remains a subject of investigation. A positive correlation between the genetic risk and the intensity of the peripheral autoimmune response was demonstrated both for HLA and non-HLA genetic risk variants. We also observed epigenetic and genetic modulation of several of these T1D susceptibility genes in dendritic cells (DCs) treated with vitamin D3 and dexamethasone to acquire tolerogenic properties as compared to immune activating DCs (mDC) illustrating the interaction between genes and environment that collectively determines risk for T1D. A notion that targeting such genes for therapeutic modulation could be compatible with correction of the impaired immune response, inspired us to review the current knowledge on the immune-related minor risk genes, their expression and function in immune cells, and how they may contribute to activation of autoreactive T cells, Treg function or β-cell apoptosis, thus contributing to development of the autoimmune disease.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap Jan Zwaginga
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Brooks-Warburton J, Modos D, Sudhakar P, Madgwick M, Thomas JP, Bohar B, Fazekas D, Zoufir A, Kapuy O, Szalay-Beko M, Verstockt B, Hall LJ, Watson A, Tremelling M, Parkes M, Vermeire S, Bender A, Carding SR, Korcsmaros T. A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in ulcerative colitis. Nat Commun 2022; 13:2299. [PMID: 35484353 PMCID: PMC9051123 DOI: 10.1038/s41467-022-29998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
We describe a precision medicine workflow, the integrated single nucleotide polymorphism network platform (iSNP), designed to determine the mechanisms by which SNPs affect cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogenesis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA and transcription factor binding interactions. With unsupervised clustering algorithms we group these patient-specific networks into four distinct clusters driven by PRKCB, HLA, SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs. The pathway analysis identifies calcium homeostasis, wound healing and cell motility as key processes in UC pathogenesis. Using transcriptomic data from an independent patient cohort, with three complementary validation approaches focusing on the SNP-affected genes, the patient specific modules and affected functions, we confirm the regulatory impact of non-coding SNPs. iSNP identified regulatory effects for disease-associated non-coding SNPs, and by predicting the patient-specific pathogenic processes, we propose a systems-level way to stratify patients.
Collapse
Affiliation(s)
- Johanne Brooks-Warburton
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hertford, UK
- Gastroenterology Department, Lister Hospital, Stevenage, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John P Thomas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Azedine Zoufir
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Bram Verstockt
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Lindsay J Hall
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 80333, Freising, Germany
| | - Alastair Watson
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Mark Tremelling
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Severine Vermeire
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon R Carding
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
7
|
Uvarova AN, Ustiugova AS, Mitkin NA, Schwartz AM, Korneev KV, Kuprash DV. The Minor T Allele of the Single Nucleotide Polymorphism rs13360222 Decreases the Activity of the HAVCR2 Gene Enhancer in a Cell Model of Human Macrophages. Mol Biol 2022. [DOI: 10.1134/s0026893322010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Peerlings D, Mimpen M, Damoiseaux J. The IL-2 - IL-2 receptor pathway: Key to understanding multiple sclerosis. J Transl Autoimmun 2022; 4:100123. [PMID: 35005590 PMCID: PMC8716671 DOI: 10.1016/j.jtauto.2021.100123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The development, progression, diagnosis and treatment of autoimmune diseases, such as multiple sclerosis (MS), are convoluted processes which remain incompletely understood. Multiple studies demonstrated that the interleukin (IL)-2 – IL-2 receptor (IL-2R) pathway plays a pivotal role within these processes. The most striking functions of the IL-2 – IL-2R pathway are the differential induction of autoimmune responses and tolerance. This paradoxical function of the IL-2 – IL-2R pathway may be an attractive therapeutic target for autoimmune diseases such as MS. However, the exact mechanisms that lead to autoimmunity or tolerance remain to be elucidated. Furthermore, another factor of this pathway, the soluble form of the IL-2R (sIL-2R), further complicates understanding the role of the IL-2 – IL-2R pathway in MS. The challenge is to unravel these mechanisms to prevent, diagnose and recover MS. In this review, first, the current knowledge of MS and the IL-2 – IL-2R pathway are summarized. Second, the key findings of the relation between the IL-2 – IL-2R pathway and MS have been highlighted. Eventually, this review may launch broad interest in the IL-2 – IL-2R pathway propelling further research in autoimmune diseases, including MS. The IL-2 – IL-2R pathway determines the balance between immunity and tolerance. The IL-2 – IL-2R pathway is involved in the pathogenesis of multiple sclerosis. The role of soluble IL-2R is controversial and requires further investigation.
Collapse
Affiliation(s)
- Daphne Peerlings
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
9
|
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J 2021; 35:e21261. [PMID: 33715225 DOI: 10.1096/fj.201903141rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
C57BL/6 laboratory mice usually show black coat color. We observed a dilute (gray) coat color phenotype in progenies of two C57BL/6 mice. This phenotype is inherited in an autosomal recessive mode. To uncover the molecular mechanism underlying this naturally occurring phenotypic variation, we performed whole-genome sequencing (25×) on 10 offspring of the two founder mice. The whole-genome DNA sequencing and additional RNA-Seq data reveal that Myo5a is the gene responsible for the coat color dilution in C57BL/6 mice, and novel mutations in the Myo5a gene are likely causal. We further performed reverse transcription-quantitative PCR, and showed increased expression of truncated Myo5a transcripts encoding dysfunctional proteins and decreased expression of Myo5a full-length transcripts encoding functional proteins in mutant individuals. The decrease in full-length messenger RNA abundance was accompanied by reduced Myo5a protein level and deficient melanosome transport, a potential mechanistic link between the Myo5a mutations and the dilute color phenotype. This study not only advances our understanding of the molecular mechanisms of pigmentation in mice, but also provides a typical case of deciphering the molecular basis of phenotypic variation in mice by genomic analyses and subsequent functional work.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongping Wu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhang
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Suzuki A, Guerrini MM, Yamamoto K. Functional genomics of autoimmune diseases. Ann Rheum Dis 2021; 80:689-697. [PMID: 33408079 DOI: 10.1136/annrheumdis-2019-216794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.
Collapse
Affiliation(s)
- Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Matteo Maurizio Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Taylor LW, French JE, Robbins ZG, Boyer JC, Nylander-French LA. Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Front Genet 2020; 11:836. [PMID: 32973864 PMCID: PMC7466756 DOI: 10.3389/fgene.2020.00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of genetic variance on biomarker levels in a population of workers in the automotive repair and refinishing industry who were exposed to respiratory sensitizers 1,6-hexamethylene diisocyanate (HDI) monomer and one of its trimers, HDI isocyanurate. The exposures and respective urine and plasma biomarkers 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) were measured in 33 workers; and genome-wide microarrays (Affymetrix 6.0) were used to genotype the workers' single-nucleotide polymorphisms (SNPs). Linear mixed model analyses have indicated that interindividual variations in both inhalation and skin exposures influenced these biomarker levels. Using exposure values as covariates and a false discovery rate < 0.10 to assess statistical significance, we observed that seven SNPs were associated with HDA in plasma, five were associated with HDA in urine, none reached significance for TAHI in plasma, and eight were associated with TAHI levels in urine. The different genotypes for the 20 significant SNPs accounted for 4- to 16-fold changes observed in biomarker levels. Associated gene functions include transcription regulation, calcium ion transport, vascular morphogenesis, and transforming growth factor beta signaling pathway, which may impact toxicokinetics indirectly by altering inflammation levels. Additionally, in an expanded analysis using a minor allele cutoff of 0.05 instead of 0.10, there were biomarker-associated SNPs within three genes that have been associated with isocyanate-induced asthma: ALK, DOCK2, and LHPP. We demonstrate that genetic variance impacts the biomarker levels in workers exposed to HDI monomer and HDI isocyanurate and that genetics can be used to refine exposure predictions in small cohorts when quantitative personal exposure and biomarker measurements are included in the models.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Keindl M, Fedotkina O, du Plessis E, Jain R, Bergum B, Mygind Jensen T, Laustrup Møller C, Falhammar H, Nyström T, Catrina SB, Jörneskog G, Groop L, Eliasson M, Eliasson B, Brismar K, Nilsson PM, Berg TJ, Appel S, Lyssenko V. Increased Plasma Soluble Interleukin-2 Receptor Alpha Levels in Patients With Long-Term Type 1 Diabetes With Vascular Complications Associated With IL2RA and PTPN2 Gene Polymorphisms. Front Endocrinol (Lausanne) 2020; 11:575469. [PMID: 33193091 PMCID: PMC7664831 DOI: 10.3389/fendo.2020.575469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1D) is largely considered an autoimmune disease leading to the destruction of insulin-producing pancreatic β cells. Further, patients with T1D have 3-4-fold increased risk of developing micro- and macrovascular complications. However, the contribution of immune-related factors contributing to these diabetes complications are poorly understood. Individuals with long-term T1D who do not progress to vascular complications offer a great potential to evaluate end-organ protection. The aim of the present study was to investigate the association of inflammatory protein levels with vascular complications (retinopathy, nephropathy, cardiovascular disease) in individuals with long-term T1D compared to individuals who rapidly progressed to complications. We studied a panel of inflammatory markers in plasma of patients with long-term T1D with (n = 81 and 26) and without (n = 313 and 25) vascular complications from two cross-sectional Scandinavian cohorts (PROLONG and DIALONG) using Luminex technology. A subset of PROLONG individuals (n = 61) was screened for circulating immune cells using multicolor flow cytometry. We found that elevated plasma levels of soluble interleukin-2 receptor alpha (sIL-2R) were positively associated with the complication phenotype. Risk carriers of polymorphisms in the IL2RA and PTPN2 gene region had elevated plasma levels of sIL-2R. In addition, cell surface marker analysis revealed a shift from naïve to effector T cells in T1D individuals with vascular complications as compared to those without. In contrast, no difference between the groups was observed either in IL-2R cell surface expression or in regulatory T cell population size. In conclusion, our data indicates that IL2RA and PTPN2 gene variants might increase the risk of developing vascular complications in people with T1D, by affecting sIL-2R plasma levels and potentially lowering T cell responsiveness. Thus, elevated sIL-2R plasma levels may serve as a biomarker in monitoring the risk for developing diabetic complications and thereby improve patient care.
Collapse
Affiliation(s)
- Magdalena Keindl
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| | - Olena Fedotkina
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Elsa du Plessis
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ruchi Jain
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Troels Mygind Jensen
- Research Unit for General Practice & Danish Ageing Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Clinical Epidemiology, Steno Diabetes Center Copenhagen (SDCC), Gentofte, Denmark
| | | | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Division of Internal Medicine, Unit for Diabetes Research, Karolinska Institute, South Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Center for Diabetes, Academica Specialist Centrum, Stockholm, Sweden
| | - Gun Jörneskog
- Karolinska Institute, Department of Clinical Sciences, Danderyd University Hospital, Division of Internal Medicine, Stockholm, Sweden
| | - Leif Groop
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mats Eliasson
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Björn Eliasson
- Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Brismar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Peter M. Nilsson
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Tore Julsrud Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Valeriya Lyssenko
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| |
Collapse
|
13
|
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI, Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA, Kolpakov FA, Makeev VJ. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res 2019; 46:D252-D259. [PMID: 29140464 PMCID: PMC5753240 DOI: 10.1093/nar/gkx1106] [Citation(s) in RCA: 505] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences.
Collapse
Affiliation(s)
- Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, GSP-1, Vavilova 32, Moscow, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia
| | - Ivan S Yevshin
- BIOSOFT.RU Ltd, 630058, Russkaya 41/1, Novosibirsk, Russia
| | - Ruslan N Sharipov
- BIOSOFT.RU Ltd, 630058, Russkaya 41/1, Novosibirsk, Russia.,Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences, 630090, Akad. Rzhanova 6, Novosibirsk, Russia.,Novosibirsk State University, 630090, Pirogova 2, Novosibirsk, Russia
| | - Alla D Fedorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Leninskiye Gory 1-73, Moscow, Russia
| | - Eugene I Rumynskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), 141700, 9 Institutskiy per, Dolgoprudny, Russia
| | - Yulia A Medvedeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), 141700, 9 Institutskiy per, Dolgoprudny, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, 2 Leninsky Ave. 33, Moscow, Russia
| | - Arturo Magana-Mora
- National Institute of Advanced Industrial Science and Technology (AIST), Com. Bio Big-Data Open Innovation Lab. (CBBD-OIL), AIST Tokyo Waterfront Main Bldg. #323, 2-3-26 Aomi, Tokyo 135-0064, Japan.,King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Dmitry A Papatsenko
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Fedor A Kolpakov
- BIOSOFT.RU Ltd, 630058, Russkaya 41/1, Novosibirsk, Russia.,Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences, 630090, Akad. Rzhanova 6, Novosibirsk, Russia
| | - Vsevolod J Makeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, GSP-1, Vavilova 32, Moscow, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), 141700, 9 Institutskiy per, Dolgoprudny, Russia
| |
Collapse
|
14
|
Buhelt S, Søndergaard HB, Oturai A, Ullum H, von Essen MR, Sellebjerg F. Relationship between Multiple Sclerosis-Associated IL2RA Risk Allele Variants and Circulating T Cell Phenotypes in Healthy Genotype-Selected Controls. Cells 2019; 8:cells8060634. [PMID: 31242590 PMCID: PMC6628508 DOI: 10.3390/cells8060634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in or near the IL2RA gene, that encodes the interleukin-2 (IL-2) receptor α (CD25), are associated with increased risk of immune-mediated diseases including multiple sclerosis (MS). We investigated how the MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with CD25 expression on T cells ex vivo by multiparameter flow cytometry in paired genotype-selected healthy controls. We observed that MS-associated IL2RA SNPs rs2104286 and rs11256593 are associated with expression of CD25 in CD4+ but not CD8+ T cells. In CD4+ T cells, carriers of the risk genotype had a reduced frequency of CD25+ TFH1 cells (p = 0.001) and an increased frequency of CD25+ recent thymic emigrant cells (p = 0.006). Furthermore, carriers of the risk genotype had a reduced surface expression of CD25 in post-thymic expanded CD4+ T cells (CD31−CD45RA+), CD39+ TReg cells and in several non-follicular memory subsets. Our study found novel associations of MS-associated IL2RA SNPs on expression of CD25 in CD4+ T cell subsets. Insight into the associations of MS-associated IL2RA SNPs, as these new findings provide, offers a better understanding of CD25 variation in the immune system and can lead to new insights into how MS-associated SNPs contribute to development of MS.
Collapse
Affiliation(s)
- Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark.
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark.
| | - Annette Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark.
| | - Henrik Ullum
- Department of Clinical Immunology, Center of Clinical Investigation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark.
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark.
| |
Collapse
|
15
|
Four novel polymorphisms in long non-coding RNA HOTTIP are associated with the risk and prognosis of colorectal cancer. Biosci Rep 2019; 39:BSR20180573. [PMID: 30940774 PMCID: PMC6504661 DOI: 10.1042/bsr20180573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/15/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The role of long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) as an oncogene in varieties of human cancer including colorectal cancer (CRC) has been extensively researched. The expression and function of lncRNAs could be affected by single nucleotide polymorphisms (SNPs), which are associated with cancer susceptibility and prognosis. However, no investigation has focused on the association between HOTTIP SNPs and CRC. The aim of the present study was to explore the association of polymorphisms in the lncRNA HOTTIP gene with CRC risk and prognosis. Methods: A total of 1848 subjects were enrolled in our study, including 884 CRC cases and 964 controls. Genotyping for five HOTTIP tagSNPs (rs3807598, rs17501292, rs2067087, rs17427960, and rs78248039) was performed by applying Kompetitive allele specific PCR (KASP). Results: The results showed three SNPs (rs3807598, rs2067087, and rs17427960) were associated with enhanced CRC risk both in overall and stratified analysis. One polymorphism, rs17501292, could improve the overall survival (OS) of CRC patients in the tumor of ulcerative/invasive-type subgroup. Conclusion: These findings suggest HOTTIP SNPs could potentially be predictive biomarkers for CRC risk and prognosis. The present study provides clues for further exploration of novel lncRNA-based genetic biomarkers to predict CRC susceptibility as well as clinical outcome.
Collapse
|
16
|
Putlyaeva LV, Demin DE, Korneev KV, Kasyanov AS, Tatosyan KA, Kulakovskiy IV, Kuprash DV, Schwartz AM. Potential Markers of Autoimmune Diseases, Alleles rs115662534(T) and rs548231435(C), Disrupt the Binding of Transcription Factors STAT1 and EBF1 to the Regulatory Elements of Human CD40 Gene. BIOCHEMISTRY (MOSCOW) 2019; 83:1534-1542. [PMID: 30878028 DOI: 10.1134/s0006297918120118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD40 receptor is expressed on B lymphocytes and other professional antigen-presenting cells. The binding of CD40 to its ligand CD154 on the surface of T helper cells plays an important role in the activation of B lymphocytes required for production of antibodies, in particular, against autoantigens. Association of several single nucleotide polymorphisms (SNPs) located in the non-coding areas of human CD40 locus with the elevated risk of autoimmune diseases has been demonstrated. The most studied of these SNPs is rs4810485 located in the first intron of the CD40 gene. Expression of the CD40 gene in B lymphocytes of donors homozygous for the common allelic variant of this polymorphism (G) is higher than in B cells from donors carrying the minor (T) variant. We investigated the enhancer activity of this fragment of the CD40 locus in human B cell lines and showed that it is independent on the rs4810485 alleles. However, the minor allelic variants of the rs4810485-linked SNPs rs548231435 and rs115662534 were associated with a significant decrease in the activity of the CD40 promoter due to the impairments in the binding of EBF1 and STAT1 transcription factors, respectively.
Collapse
Affiliation(s)
- L V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - D E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, Dolgoprudny, Moscow Region, 141701, Russia
| | - K V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A S Kasyanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - K A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - I V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.,Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - D V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, Dolgoprudny, Moscow Region, 141701, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
17
|
Xia ZL, Qin QM, Zhao QY. A genetic link between CXCR5 and IL2RA gene polymorphisms and susceptibility to multiple sclerosis. Neurol Res 2018; 40:1040-1047. [PMID: 30352019 DOI: 10.1080/01616412.2018.1517110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a T-cell-mediated disease of the central nervous system that develops in individuals possessing a complex susceptibility trait. We explored relationship between gene polymorphisms in MS. METHODS To identify the associations of CXCR5 and IL2RA gene polymorphisms with susceptibility to MS, we recruited 263 MS patients from the Han nationality and 138 from the Hui nationality as MS group and 284 healthy volunteers from the Han nationality and 156 from the Hui nationality as controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was employed to test gene polymorphisms of IL2RA (rs2104286 and rs12722489). Sequenom MassARRAY system was applied to analyze genotyping of CXCR5 (rs3922). RESULTS The genotypes and allele frequency distributions at the loci of IL2RA rs2104286 and rs12722489 showed significant differences between the MS and control groups. The gene polymorphisms at the loci of IL2RA rs2104286 and rs12722489 may increase the onset risk of MS. IL2RA-rs2104286 showed a positive relationship with CXCR5-rs3922. The same relationship was also observed between IL2RA-rs12722489 and CXCR5-rs3922. The genotypes and allele frequencies of loci of rs2104286 and rs12722489 were significantly different in MS clinical subtypes and severity (EDSS score). Additionally, CAC and TGC haplotype at rs3922-rs12722489-rs2104286 may reduce the risk of MS, while CGT and TGT haplotypes increase the risk. CONCLUSION The gene polymorphisms at the loci of IL2RA rs2104286 and rs12722489 are closely associated with susceptibility to MS in the Han and Hui nationalities.
Collapse
Affiliation(s)
- Zong-Li Xia
- a Department of Neurology , Linyi Central Hospital , Linyi , P. R. China
| | - Qing-Mei Qin
- a Department of Neurology , Linyi Central Hospital , Linyi , P. R. China
| | - Qing-Ying Zhao
- b Neonatal Intensive Care Unit, Linyi Central Hospital , Linyi , P. R. China
| |
Collapse
|
18
|
Belot MP, Castell AL, Le Fur S, Bougnères P. Dynamic demethylation of the IL2RA promoter during in vitro CD4+ T cell activation in association with IL2RA expression. Epigenetics 2018; 13:459-472. [PMID: 30096258 DOI: 10.1080/15592294.2018.1469893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IL2RA, a subunit of the high affinity receptor for interleukin-2 (IL2), plays a crucial role in immune homeostasis. Notably, IL2RA expression is induced in CD4+ T cells in response to various stimuli and is constitutive in regulatory T cells (Tregs). We selected for our study 18 CpGs located within cognate regulatory regions of the IL2RA locus and characterized their methylation in naive, regulatory, and memory CD4+ T cells. We found that 5/18 CpGs (notably CpG + 3502) show dynamic, active demethylation during the in vitro activation of naive CD4+ T cells. Demethylation of these CpGs correlates with appearance of IL2RA protein at the cell surface. We found no influence of cis located SNP alleles upon CpG methylation. Treg cells show constitutive demethylation at all studied CpGs. Methylation of 9/18 CpGs, including CpG +3502, decreases with age. Our data thus identify CpG +3502 and a few other CpGs at the IL2RA locus as coordinated epigenetic regulators of IL2RA expression in CD4+ T cells. This may contribute to unravel how the IL2RA locus can be involved in immune physiology and pathology.
Collapse
Affiliation(s)
- Marie-Pierre Belot
- a Institut National de la Santé et de la Recherche Médicale UMR1169 , Paris Sud University, Bicêtre Hospital , Le Kremlin-Bicêtre , France.,b Fondation de l'AP-HP pour la Recherche , Paris , France
| | - Anne-Laure Castell
- c Service de Médecine des Adolescents , Paris Sud University, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Sophie Le Fur
- a Institut National de la Santé et de la Recherche Médicale UMR1169 , Paris Sud University, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Pierre Bougnères
- a Institut National de la Santé et de la Recherche Médicale UMR1169 , Paris Sud University, Bicêtre Hospital , Le Kremlin-Bicêtre , France.,c Service de Médecine des Adolescents , Paris Sud University, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| |
Collapse
|