1
|
Ghanem M, Justet A, Jaillet M, Vasarmidi E, Boghanim T, Hachem M, Vadel A, Joannes A, Mordant P, Balayev A, Adams T, Mal H, Cazes A, Poté N, Mailleux A, Crestani B. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L818-L830. [PMID: 39350729 DOI: 10.1152/ajplung.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited therapeutic options. Fibroblast growth factor receptor-4 (FGFR4) is a known receptor for several paracrine fibroblast growth factors (FGFs). FGFR4 is also the main receptor for FGF19, an endocrine FGF that was demonstrated by our group to have antifibrotic properties in the lung. We aimed to determine whether FGFR4 could modulate pulmonary fibrogenesis. We assessed FGFR4 mRNA and protein levels in IPF and control lungs. In vitro, we determined the effect of transforming growth factor-β (TGF-β), endothelin-1, and platelet-derived growth factor (PDGF) on FGFR4 expression in human lung fibroblasts. We determined the effect of FGFR4 inhibition, using a specific pharmacological inhibitor (FGF401), or genetic deletion in murine embryonic fibroblasts (MEFs) on TGF-β-induced myofibroblastic differentiation. In vivo, we evaluated the development of bleomycin-induced lung fibrosis in Fgfr4-deficient (Fgfr4-/-) mice compared with wild-type littermates (WT) and after FGF401 treatment in WT mice compared with a control group receiving the solvent only. FGFR4 was decreased in IPF lungs, as compared with control lungs, at mRNA and protein levels. In vitro, FGFR4 was downregulated after treatment with TGF-β, endothelin-1, and PDGF. In vitro, FGFR4 inhibition by FGF401 prevented TGF-β1-induced collagen and ACTA2 increase in lung fibroblasts. Similar results were observed in Fgfr4-/- MEFs. In vivo, FGFR4 genetic deficiency or FGFR4 pharmacological inhibition did not modulate bleomycin-induced pulmonary fibrosis. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo.NEW & NOTEWORTHY FGFR4 has been reported to have antifibrotic effects in the liver. We aimed to determine the involvement of FGFR4 during IPF. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo. To our knowledge, this is the first study to assess the profibrotic action of FGFR4 during pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélien Justet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Madeleine Jaillet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Eirini Vasarmidi
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Tiara Boghanim
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Mouna Hachem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélie Vadel
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Audrey Joannes
- INSERM U1085, IRSET Institut de Recherche sur la Santé, l'Environnement et le Travail, Université de Rennes-1, Rennes, France
| | - Pierre Mordant
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et vasculaire, Paris, France
| | - Agshin Balayev
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hervé Mal
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France
| | - Aurélie Cazes
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Nicolas Poté
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Arnaud Mailleux
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Centre de Référence des Maladies Pulmonaires Rares, Paris, France
| |
Collapse
|
2
|
Li H, Dong X, Wang L, Wen H, Qi X, Zhang K, Li Y. Genome-wide identification of Fgfr genes and function analysis of Fgfr4 in myoblasts differentiation of Lateolabrax maculatus. Gene 2024; 927:148717. [PMID: 38908457 DOI: 10.1016/j.gene.2024.148717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
3
|
Zhu Y, Zhang J, Yu L, Xu S, Chen L, Wu K, Kong L, Lin W, Xue J, Wang Q, Lin Y, Chen X. SENP3 promotes tumor progression and is a novel prognostic biomarker in triple-negative breast cancer. Front Oncol 2023; 12:972969. [PMID: 36698419 PMCID: PMC9868814 DOI: 10.3389/fonc.2022.972969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiasheng Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangfei Yu
- Department of Breast Surgery, the First Hospital of Fuzhou, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiajie Xue
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| |
Collapse
|
4
|
Liu Y, Wang C, Li J, Zhu J, Zhao C, Xu H. Novel Regulatory Factors and Small-Molecule Inhibitors of FGFR4 in Cancer. Front Pharmacol 2021; 12:633453. [PMID: 33981224 PMCID: PMC8107720 DOI: 10.3389/fphar.2021.633453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is a tyrosine kinase receptor that is a member of the fibroblast growth factor receptor family and is stimulated by highly regulated ligand binding. Excessive expression of the receptor and its ligand, especially FGF19, occurs in many types of cancer. Abnormal FGFR4 production explains these cancer formations, and therefore, this receptor has emerged as a potential target for inhibiting cancer development. This review discusses the diverse mechanisms of oncogenic activation of FGFR4 and highlights some currently available inhibitors targeting FGFR4.
Collapse
Affiliation(s)
- Yanan Liu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Canwei Wang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiandong Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanhai Xu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Genome-wide chromatin accessibility is restricted by ANP32E. Nat Commun 2020; 11:5063. [PMID: 33033242 PMCID: PMC7546623 DOI: 10.1038/s41467-020-18821-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels. Chromatin state underlies cellular function, and transcription factor binding patterns along with epigenetic marks define chromatin state. Here the authors show that the histone chaperone ANP32E functions through regulation of H2A.Z to restrict genome-wide chromatin accessibility and to inhibit gene transcriptional activation.
Collapse
|