1
|
An Q, Zeng L, Wang W, Yang J, Meng J, Zhao Y, Song X. Identification of FASN Gene Polymorphisms, Expression and Their Relationship with Body Size Traits in Guizhou White Goat ( Capra hircus) with Different Genders. Genes (Basel) 2024; 15:656. [PMID: 38927592 PMCID: PMC11202680 DOI: 10.3390/genes15060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
To investigate the nucleotide variation sites (SNPs) and expression differences of the fatty acid synthase gene (FASN) in Guizhou white goats, the relationship between the variation and body size traits was investigated. In this study, DNA was extracted from the blood of 100 samples of white goats from different regions in Guizhou province, China, and the variation sites were screened using pooled sequencing by mixing DNA samples, and 242 blood samples with body size traits were used for association analysis. The allele frequency, genotype frequency, homozygosity, heterozygosity and effective gene number were calculated by using PopGene 32.0 software, the population polymorphism information content was calculated by using PIC software (Version 0.6), and the state of genetic balance of the genes was analyzed by using the chi-square test. The mRNA of FASN gene expression levels in male and female goats were investigated by using real-time fluorescence quantitative PCR (RT-qPCR). The general linear mixed model of MINTAB software (Version 16.0) was used to analyze the association between FASN gene nucleotide mutation sites and body size traits. The results showed that there was one nucleotide mutation site g.141 C/T in the target fragment of FASN gene amplification, and revealed two alleles, C and T, and three genotypes CC, CT and TT. The genotype frequencies for CC, CT and TT were 0.4308, 0.4205 and 0.1487, respectively. The allele frequencies for C and T were 0.6410 and 0.3590, respectively. The genetic homozygosity (Ho) was higher than the heterozygosity (He). The χ2 test showed that the mutation site was in the Hardy-Weinberg equilibrium state (p > 0.05). The RT-qPCR results showed that the FASN gene had different expression levels in the longissimus dorsi muscle of male and female goats, and its expression was significantly higher in male goats than in female goats. The association analysis results showed that the mutation of the FASN gene had different effects on body size traits of male and female goats, and the presence of the populations of the T allele and the TT genotype recorded higher body size traits (body weight, heart girth and wither height) in female populations. Therefore, the site of the FASN gene can be used as a candidate marker for the early selection of growth traits in Guizhou white goats.
Collapse
Affiliation(s)
- Qingming An
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, College of Agriculture and Forestry Engineering, Tongren University, Tongren 554300, China; (L.Z.); (W.W.); (J.Y.); (J.M.); (Y.Z.); (X.S.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Kaster N, Khan R, Ahmad I, Zhigerbayevich KN, Seisembay I, Nurbolat A, Hamitovna SK, Mirambekovna OK, Bekbolatovna MA, Amangaliyev TG, Bolatbek A, Yeginbaevich TZ, Ahmad S, Linsen Z, Baibolsynovna BA. RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation. Anim Biosci 2024; 37:929-943. [PMID: 37946430 PMCID: PMC11065710 DOI: 10.5713/ab.23.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. METHODS The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. RESULTS The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their downregulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. CONCLUSION Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
Collapse
Affiliation(s)
- Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Kazhgaliyev Nurlybay Zhigerbayevich
- Candidate of Sciences in Agriculture, Researcher of Scientific and Production Centre for Animal Husbandry and Veterinary Limited Liability Partnership, Astana 010000,
Kazakhstan
| | - Imbay Seisembay
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Akhmetbekov Nurbolat
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Shaikenova Kymbat Hamitovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Omarova Karlygash Mirambekovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | | | | | - Ateikhan Bolatbek
- Faculty of Agricultural Sciences, Toraighyrov University, Pavlodar 140000,
Kazakhstan
| | | | - Shakoor Ahmad
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | | |
Collapse
|
3
|
Jang S, Jang S, Kim J, Park W. Multi-tissue transcriptome analysis to identify candidate genes associated with weight regulation in Hanwoo cattle. Front Genet 2024; 14:1304638. [PMID: 38264212 PMCID: PMC10803631 DOI: 10.3389/fgene.2023.1304638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
While genetic markers related to meat production traits have been identified in many other cattle breeds, research on weight in Hanwoo cattle (Korean native cattle) is still insufficient. In this study, we performed expression quantitative trait loci (eQTL) analysis and differential gene expression analysis to detect candidate genes influencing the weight characteristics of 32 castrated Hanwoo cattle across 22 tissues and, we identified variants that affect gene expression levels. In total, we identified a total of 3,298 differentially expressed genes, among which we discovered key genes such as UBD, RGS2, FASN, and SCD that have functions related to adipogenesis, body weight, obesity, and lipid metabolism. Gene-set enrichment analysis revealed that candidate genes in adipose tissue are involved in metabolic pathways linked to obesity-related traits, adipose metabolism, and lipid metabolism. Additionally, we found that decreased expression of TRIM31 contributes to weight gain which can be explained by the associated candidate cis-eQTL genotypes for TRIM31 and their effect on differential gene expression between the lower and higher weight groups. Our findings revealed candidate genes associated with the weight of Hanwoo cattle and perhaps can provide comprehensive insights into the association of weight with various tissues beyond adipose tissue and muscle, indicating the potential for expanding the focus of livestock trait research.
Collapse
Affiliation(s)
- Subin Jang
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunsik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
4
|
Liu C, Liu X, Yuan Z, Zhang X, Li F, Yue X. Expression profile of FASN gene and association of its polymorphisms with intramuscular fat content in Hu sheep. Anim Biotechnol 2023; 34:4347-4356. [PMID: 36448692 DOI: 10.1080/10495398.2022.2149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The content of intramuscular fat (IMF) is one of the most important factors that has a large impact on meat quality, and it is an effective way to improve IMF according to marker-assisted selection (MAS). Fatty-acid synthase (FASN) is a key gene in meat lipid deposition and fatty acid composition. Thus, this study was conducted to investigate the expression profile of FASN in mRNA and protein levels using real-time quantitative PCR (RT-qPCR) and western-blot methods. In addition, single nucleotide polymorphisms (SNPs) within FASN in 921 Hu rams with IMF content records were investigated using DNA-pooling sequencing and improved multiple ligase detection reaction (iMLDR) methods. Consequently, the highest mRNA expression level of FASN was observed in the perinephric fat, and the lowest in the liver among the 11 tissues analyzed, while no significant difference was found in mRNA and protein expression levels in longissimus dorsi among individuals with different IMF contents. A total of 10 putative SNPs were identified within FASN, and 9 of them can be genotyped by iMLDR method. Notably, two SNPs were significantly associated with IMF content, including NC_040262.1: g.5157 A > G in intron 5 (p = 0.046) and NC_040262.1: g.9413 T > C in intron 16 (p = 0.041), which supply molecular markers for improving meat quality in sheep breeding.
Collapse
Affiliation(s)
- Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Wei D, Wang J, Jiupan Z, Khan R, Abbas Raza SH, Yaping S, Chao J, Ayari-Akkari A, Ahmed DAEM. Roles of MEF2A and HOXA5 in the transcriptional regulation of the bovine FoxO1 gene. Anim Biotechnol 2023; 34:4367-4379. [PMID: 36449378 DOI: 10.1080/10495398.2022.2150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Forkhead box factor 1 (FoxO1) gene plays a vital role in the growth and development of skeletal muscle. In the present study, expression analysis of the bovine FoxO1 gene exhibited the highest expression in longissimus dorsi muscle followed by its expression in adipose tissue. Moreover, high mRNA expression of FoxO1 gene was found in differentiated bovine myoblasts and adipocytes at day 6 of induced differentiation (p < 0.05). The regulatory pattern of the bovine FoxO1 gene was investigated through screening and dual-luciferase activity of the 1.7 kb 5'UTR (untranslated region) within pGL3-basic vector and a core promoter region was explored at (-285/-27) upstream of the transcription start site. The transcription factors (TFs) MEF2A and HOXA5 within the core promoter region (-285/-27) were found as the regulatory cis-acting element. The siRNA interference of the TFs, chromatin immunoprecipitation (ChIP) assay, and site-directed mutation validated that MEF2A and HOXA5 binding occurs in the region -285/-27 bp and performs an essential role in the transcriptional regulation of bovine FoxO1 gene. These findings explored the regulatory network mechanism of the FoxO1 gene in skeletal muscle development and adipogenesis for the bovine breed improvement program.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jin Wang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhang Jiupan
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Rajwali Khan
- Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | | | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dalia Abd El Moneim Ahmed
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Zhao X, Khan R, Hongfang G, Abbas Raza SH, Ayari-Akkari A, Othman G, Alshammari AM, Aloufi BH, Alabbosh KF, Alshammari WB, Linsen Z. Genetic variants of TORC1 gene promoter and their association with carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:2537-2545. [PMID: 35916659 DOI: 10.1080/10495398.2022.2105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, sequencing of TORC1 prompter region explored three SNPs at loci g.80G>T, g.93A>T, and g.1253G>A. The SNP1 produced GG, GT and TT, SNP2 AA, AT and TT, and SNP3 produced GG, GA and AA genotypes. Allelic and genotypic frequencies analysis exhibited that SNP1 is within Hardy-Weinberg equilibrium (HWE). All three SNPs were found highly polymorphic as PIC value (0.25 < PIC < 0.50). At loci g.80G>T the cattle with genotype GG showed significantly (P <0.01) larger body length (BL), Wither height (WH), Hip height (HH), Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). The genotype AA at g.93A>T showed significantly (P< 0.01 and 0.05) Larger body length (BL), Wither height (WH), Hip height, Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). Interestingly, the carcass quality parameters such as Ultrasound loin area (ULA) and Intramuscular fat percentage (IF%) was highest in genotype GG at loci g.1253G>A. These findings conclude that genotype GG at loci g.80 G>T and AA at loci g.93A>T could be used as genetic markers for body measurement and genotype GG at loci g.1253G>A for carcass quality traits of TORC1 gene in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guo Hongfang
- Medical College, Xuchang University, Xuchang, China
| | | | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | | | - Wasimah B Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Nurgulsim K, Khan R, Raza SHA, Ayari-Akkari A, Jeridi M, Ahmad I, Arain UM, Abd El-Aziz AH, Khan H, Zan L. Bioinformatics and genetic variants analysis of FGF10 gene promoter with their association at carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:1950-1959. [PMID: 35446746 DOI: 10.1080/10495398.2022.2059667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The fibroblast growth factor 10 (FGF10) gene regulates adipogenesis and myogensis. In this study, sequencing of FGF10 prompter region identified three SNPs at loci g.78G > A, g.116C > T and g.201A > T. Each SNP yields three genotypes as GG, GA and AA at loci g.78G > A, CC, CT and TT at loci g.116C > T and AA, AT and TT at loci g.201A > T. Allelic and genotypic frequencies of all three SNPs deviated from the Hardy-Weinberg equilibrium (HWE) (P < 0.05) and were found highly polymorphic as PIC (0.25 < PIC < 0.50). Moreover, we found highest LD (D'/γ2) between SNP2 and SNP3 (0.989/0.909), followed by SNP1 and SNP3 (0.944/0.796). Moreover, three variants of FGF10 gene promoter exhibited significant (P < 0.05) association with body measurement and carcass quality traits in Qinchuan beef cattle. At loci g.78G > A, the genotype GG showed significantly (P < 0.01) larger body length (BL), rump length (RL), chest depth (CD), chest circumference (CC) and ultrasound loin area (ULA). The genotype TC at loci g.116C > T showed significantly (P < 0.01 and 0.05) larger body measurement and intramuscular fat, and ultrasound loin area (ULA). In addition to that, at loci g.201A > T, genotype TT showed significantly (P < 0.01 and P < 0.05) larger body length (BL), rump length (RL), hip width (HW), chest circumference (CC) and ultrasound loin area (ULA). Additionally, screening of promoter sequence of FGF10 gene explored loss of four TFs binding sites (KLF3, ZNF37α, GLIS2 and BCL11A) at g.116C > T because of SNP2. However, a single TF binding site was lost at g.202A > T due to SNP3. Interestingly, none of TF binding site was lost at g.78G > A in SNP1; however, one new TF binding site was gained at this location due to SNP1. These findings conclude that genotype GG, TC and TT could be used as genetic markers of FGF10 gene for body measurement and carcass quality traits in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro technical University, Nur-Sultan, Kazakhstan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | | | - Amel Ayari-Akkari
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | - Uroosa Mumtaz Arain
- Department of Poultry Husbandry, Sindh Agriculture University, Tandojam, Pakistan
| | - Ayman Hassan Abd El-Aziz
- Department of Animal Breeding and Production, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | - Hamayun Khan
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
8
|
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int J Mol Sci 2023; 24:15488. [PMID: 37895167 PMCID: PMC10607073 DOI: 10.3390/ijms242015488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acetyl-CoA carboxylase beta (ACACB) is a functional candidate gene that impacts fat deposition. In the present study, we sequenced exon 37-intron 37, exon 46-intron 46, and intron 47 of yak ACACB using hybrid pool sequencing to search for variants and genotyped the gene in 593 Gannan yaks via Kompetitive allele-specific polymerase chain (KASP) reaction to determine the effect of ACACB variants on carcass and meat quality traits. Seven single nucleotide polymorphisms were detected in three regions. Eight effective haplotypes and ten diplotypes were constructed. Among them, a missense variation g.50421 A > G was identified in exon 37 of ACACB, resulting in an amino acid shift from serine to glycine. Correlation analysis revealed that this variation was associated with the cooking loss rate and yak carcass weight (p = 0.024 and 0.012, respectively). The presence of haplotypes H5 and H6 decreased Warner-Bratzler shear force (p = 0.049 and 0.006, respectively), whereas that of haplotypes H3 and H4 increased cooking loss rate and eye muscle area (p = 0.004 and 0.034, respectively). Moreover, the presence of haplotype H8 decreased the drip loss rate (p = 0.019). The presence of one and two copies of haplotypes H1 and H8 decreased the drip loss rate (p = 0.028 and 0.004, respectively). However, haplotype H1 did not decrease hot carcass weight (p = 0.011), whereas H3 increased the cooking loss rate (p = 0.007). The presence of one and two copies of haplotype H6 decreased Warner-Bratzler shear force (p = 0.014). The findings of the present study suggest that genetic variations in ACACB can be a preferable biomarker for improving yak meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.Z.); (Y.Q.); (X.W.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|
9
|
Xie Q, Zhang Z, Chen Z, Sun J, Li M, Wang Q, Pan Y. Integration of Selection Signatures and Protein Interactions Reveals NR6A1, PAPPA2, and PIK3C2B as the Promising Candidate Genes Underlying the Characteristics of Licha Black Pig. BIOLOGY 2023; 12:biology12040500. [PMID: 37106701 PMCID: PMC10135650 DOI: 10.3390/biology12040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Licha black (LI) pig has the specific characteristics of larger body length and appropriate fat deposition among Chinese indigenous pigs. Body length is one of the external traits that affect production performance, and fat deposition influences meat quality. However, the genetic characteristics of LI pigs have not yet been systematically uncovered. Here, the genomic information from 891 individuals of LI pigs, commercial pigs, and other Chinese indigenous pigs was used to analyze the breed characteristics of the LI pig with runs of homozygosity, haplotype, and FST selection signatures. The results showed the growth traits-related genes (i.e., NR6A1 and PAPPA2) and the fatness traits-related gene (i.e., PIK3C2B) were the promising candidate genes that closely related to the characteristics of LI pigs. In addition, the protein–protein interaction network revealed the potential interactions between the promising candidate genes and the FASN gene. The RNA expression data from FarmGTEx indicated that the RNA expression levels of NR6A1, PAPPA2, PIK3C2B, and FASN were highly correlated in the ileum. This study provides valuable molecular insights into the mechanisms that affect pig body length and fat deposition, which can be used in the further breeding process to improve meat quality and commercial profitability.
Collapse
|
10
|
Genetic polymorphism of Β-casein gene and its association with milk production and composition in Azi-Kheli buffalo. Trop Anim Health Prod 2023; 55:94. [PMID: 36809577 DOI: 10.1007/s11250-023-03511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
The aim of this study was to find out the genetic polymorphism in β-casein gene CSN2 in Azi-Kheli buffaloes found in district Swat. Blood samples from 250 buffaloes were collected and processed in lab for sequencing to see the genetic polymorphism in CSN2 gene on 67 position of exon7. The β-casein is a milk second abundant protein having some variants, wherein A1 and A2 are the most common. After performing sequence analysis, it was found that Azi-Kheli buffaloes were homozygous for only A2 type variant. The amino acid change (proline to histadine) on 67 position of exon 7 was not found; however, three other novel SNPs at loci g.20545A > G, g.20570G > A, and g.20693C > A were identified in the study. Amino acid change due to SNPs were found as SNP1, valine > proline; SNP2, leucin > phenylalanine; and SNP3, threonine > valine. Allelic and genotypic frequencies' analysis exhibited that all three SNPs were following the Hardy-Weinberg equilibrium (HWE: P < 0.05). All the three SNPs showed medium PIC value and gene heterozygosity. The SNPs located on different position of exon 7 of CSN2 gene exhibited associations with some of the performance traits and milk composition. Higher daily milk yield of 9.86 ± 0.43 L and the peak milk yield of 13.80 ± 0.60 L were found in response to SNP3 followed by SNP2 and SNP1. The percentage of milk fat and protein was found significantly higher (P ≤ 0.05) in relation to SNP3 followed by SNP2 and SNP1 given as 7.88 ± 0.41, 7.48 ± 0.33, and 7.15 ± 0.48 for fat% and 4.00 ± 0.15, 3.73 ± 0.10 and 3.40 ± 0.10 for protein%. It was concluded that Azi-Kheli buffalo milk contains A2 genetic variant along with other useful novel variants indicating quality milk for human health. Genotypes of SNP3 should be given preference in selection both in indices and nucleotide polymorphism.
Collapse
|
11
|
Xiong L, Pei J, Wang X, Guo S, Guo X, Yan P. Lipidomics and Transcriptome Reveal the Effects of Feeding Systems on Fatty Acids in Yak’s Meat. Foods 2022; 11:foods11172582. [PMID: 36076769 PMCID: PMC9455248 DOI: 10.3390/foods11172582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The differences of fatty acids in yak’s meat under graze feeding (GF) and stall feeding (SF) regimes and the regulation mechanism of the feeding system on the fatty acids content in yak ’s meat was explored in this study. First, the fatty acids in yak’s longissimus dorsi (LD) muscle were detected by gas liquid chromatography (GLC). Compared with GF yaks, the absolute content of ΣSFAs, ΣMUFAs, ΣUFAs, ΣPUFAs and Σn-6PUFAs in SF yak’s LD were higher, whereas Σn-3PUFAs was lower; the relative content of ΣMUFAs, ΣPUFAs, Σn-3PUFAs and ΣUFAs in SF yak’s LD were lower, whereas ΣSFAs was higher. The GF yak’s meat is healthier for consumers. Further, the transcriptomic and lipidomics profiles in yak’s LD were detected by mRNA-Sequencing (mRNA-Seq) and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), respectively. The integrated transcriptomic and lipidomics analysis showed the differences in fatty acids were caused by the metabolism of fatty acids, amino acids, carbohydrates and phospholipids, and were mainly regulated by the FASN, FABP3, PLIN1, SLC16A13, FASD6 and SCD genes in the PPAR signaling pathway. Moreover, the SCD gene was the candidate gene for the high content of ΣMUFA, and FADS6 was the candidate gene for the high content of Σn-3PUFAs and the healthier ratio of Σn-6/Σn-3PUFAs in yak meat. This study provides a guidance to consumers in the choice of yak’s meat, and also established a theoretical basis for improving yak’s meat quality.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-0931-2115271
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
12
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Lipogenic Gene Single Nucleotide Polymorphic DNA Markers Associated with Intramuscular Fat, Fat Melting Point, and Health-Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in Australian Pasture-Based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. Genes (Basel) 2022; 13:1411. [PMID: 36011322 PMCID: PMC9407580 DOI: 10.3390/genes13081411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
This study used targeted sequencing aimed at identifying single nucleotide polymorphisms (SNP) in lipogenic genes and their associations with health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP) of the M. longissimus dorsi muscle in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu cattle. It was hypothesized that SNP encoding for the fatty acid-binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), and fatty acid synthase (FASN) genes will be significantly associated with health-beneficial n-3 LC-PUFA and the meat eating quality traits of IMF and FMP in an Australian pasture-based beef production system. Two SNP mutations, g.21267406 T>C and g.21271264 C>A, in the SCD gene were significantly (p < 0.05) associated with IMF, FMP, oleic acid (18:1n-9), linoleic acid (LA) 18:2n-6, alpha-linolenic acid (ALA) 18:3n-3, eicosapentaenoic acid (EPA) 20:5n-3, docosahexaenoic acid (DHA) 22:6-n-3, and docosapentaenoic acid (DPA) 22:5n-3. Significant positive correlations (p < 0.05) between FASN SNP g. 50787138 A>G and FMP, 18:1n-9, ALA, EPA, DHA, DPA, and total n-3 LC-PUFA were also detected. An SNP (g.44678794 G>A) in the FABP4 gene was associated with FMP. These results provide significant insights into the contributions of lipogenic genes to intramuscular fat deposition and the biosynthesis of health-beneficial n-3 LC-PUFA. The findings also unravel the potential use of lipogenic gene polymorphisms in marker-assisted selection to improve the content of health-promoting n-3 LC-PUFA and meat eating quality traits in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu beef cattle.
Collapse
Affiliation(s)
- John R. Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Felista W. Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Shedrach B. Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- National Veterinary Research Institute, PMB 01, Vom 930001, Plateau State, Nigeria
| | - Oyelola A. Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Aduli E. O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
13
|
Al-Thuwaini TM, Aqeel Kareem Z. Dr. Novel missense variant L46Q of fatty acid synthase gene and fatty acids content in Awassi sheep. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.56273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to investigate the association between the polymorphism of the FASN gene with fatty acid content in Awassi sheep. A total of 100 male Awassi sheep between the ages of one and two and a half years old were used in this study. Phenotypic measurement was recorded at slaughter, and from each animal, the longissimus dorsi (LD) muscle samples were taken to analyze the fatty acid profile. Genotyping, sequencing reactions, and in silico tools were performed to confirm the variants in amplified fragments. The result of genotyping revealed two genotypes (AA and AB) of the ovine FASN gene (exon 3). Novel SNP (L46Q) was discovered only within the FASN gene (AB genotype). All utilized in silico tools revealed remarkably deleterious effects for the L46Q on the mutant protein structure, function, and stability. Association analysis revealed that the AB genotype has significantly (p < 0.05) higher levels of animal length and monounsaturated fatty acids (MUFA) with lower amounts of saturated fatty acids (SFA) content than the AA genotype. In conclusion, novel SNP (L46Q) was discovered within the FASN gene (AB genotype), made the animals that has the AB genotype associated with good meat quality traits and this polymorphism may serve as markers for meat quality.
Collapse
|
14
|
Association of variants in FABP4, FASN, SCD, SREBP1 and TCAP genes with intramuscular fat, carcass traits and body size in Chinese Qinchuan cattle. Meat Sci 2022; 192:108882. [PMID: 35714427 DOI: 10.1016/j.meatsci.2022.108882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to genotype the variants in FABP4, FASN, SCD, SREBP1 and TCAP genes, and to analyze their associations with intramuscular fat (IMF) content, carcass traits and body size in Chinese Qinchuan cattle (QC). The association studies showed that the FABP4 c.220A > G polymorphism was significantly associated with ultrasound longissimus muscle depth (ULMD) and IMF, the FASN g.16024A > G polymorphism was significantly associated with ULMD and some body size traits, the SREBP1 84 bp indel was significantly associated with back fat thickness, ULMD and some body size traits. The frequencies of well-characterized A allele in FABP4 c.220A > G in Korean cattle (KOR) and Japanese Black cattle (JB), T allele in SCD g.8586C > T in KOR, SS genotype in SREBP1 84 bp indel in KOR and JB, DELDEL genotype in TCAP g.592-597CTGCAGinsdel in KOR were significantly higher than in Chinese cattle breeds. Thus, the associated four polymorphisms were expected to be genetic selection markers for meat quality, carcass traits and body size of QC.
Collapse
|
15
|
Wu J, Zhang S, Yue B, Zhang S, Jiang E, Chen H, Lan X. CircRNA Profiling Reveals CircPPARγ Modulates Adipogenic Differentiation via Sponging miR-92a-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6698-6708. [PMID: 35610559 DOI: 10.1021/acs.jafc.2c01815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adipogenesis describes the proliferation, differentiation, and apoptosis of mature adipocytes from primary adipocytes and is regulated by post-transcriptional modifications. Circular RNAs (circRNAs) play critical roles in mammalian development and physiology. However, the circRNA-mediated regulation of adipogenesis remains poorly understood. We profiled circRNA expression during bovine primary adipogenesis, detecting 16 circRNA candidates, including circPPARγ, which was abundant in the adipose tissue. Overexpression (overexpression plasmids) and interference (small interfering RNAs) with circPPARγ in bovine primary adipocytes, and proliferation, differentiation, and apoptosis were analyzed using EdU (5-ethynyl-2'-deoxyuridine) cell proliferation, cell counting kit-8, flow cytometry, TdT-mediated dUTP nick-end labeling apoptosis assay, Oil Red O staining, quantitative real-time PCR, and western blotting assays, which showed that circPPARγ facilitates adipocyte differentiation and inhibits proliferation and apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation assays indicated that circPPARγ binds miR-92a-3p and YinYang 1 (YY1). A novel regulatory pathway regulating adipogenesis and adipose deposition was revealed.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enhui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
17
|
Cavedon M, vonHoldt B, Hebblewhite M, Hegel T, Heppenheimer E, Hervieux D, Mariani S, Schwantje H, Steenweg R, Watters M, Musiani M. Selection of both habitat and genes in specialized and endangered caribou. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36. [PMID: 35146809 DOI: 10.1111/cobi.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Montana, MT, 59812, USA
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Y1A 2C6, Canada
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, 4999 98 Ave., Edmonton, AB, T6B 2×3, Canada
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, AB, T8V 6J4, Canada
| | - Stefano Mariani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, 2080 Labieux Road, Nanaimo, BC, V9T 6J 9, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Megan Watters
- Land and Resource Specialist, 300 - 10003 110th Avenue Fort, St. John, BC, V1J 6M7, Canada
| | - Marco Musiani
- Dept. of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
18
|
Peng Y, Li H, Shen K, Pan W, Zhang J, Zhou D. Nano-selenium alleviating the lipid metabolism disorder of LMH cells induced by potassium dichromate via down-regulating ACACA and FASN. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69426-69435. [PMID: 34302249 DOI: 10.1007/s11356-021-14775-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) VI is a common environmental contaminant highly toxic to livers. To explore the protective effect of nano-selenium (NANO-Se) on broiler liver damage caused by Cr (VI), this experiment was conducted with chicken hepatocellular carcinoma cell line (LMH) as the research object, using potassium dichromate (PDC) and NANO-Se gel for culturing cells. The results indicated that: (1) in the PDC-exposure group, LMH cells being treated with 20 μmol/L PDC for 24 h, IC50 (median inhibition concentration) = 23.427 could significantly reduce cell activity (p < 0.01) which decreased over time. PDC markedly increased the concentration of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) in LMH cells (p < 0.01), which increased over time. In addition, PDC could substantially augment the transcription and protein levels of acetyl-CoA carboxylases alpha (ACACA) and fatty acid synthase (FASN) in LMH cells (p < 0.01). (2) Compared with the PDC-exposure group, the addition of 8 μmol/L NANO-Se after 12 h of PDC treatment could significantly increase the cell viability (p < 0.01) but decreased over time; the levels of TG and LDL-C in LMH cells declined markedly (p < 0.01). In addition, the transcription and protein levels of ACACA and FASN in LMH cells were significantly reduced (p < 0.01). (3) The LMH cells were cultured in advance with 8 μmol/L NANO-Se for 12 h and then with PDC for 24 h. The obtained results were similar to the above. There were no obvious differences in TG and LDL-C levels (p > 0.05). However, significant differences were found in the activity of LMH cells and the expression of genes related to lipid metabolism (p < 0.05).All these results suggest that the exposure to PDC promotes the increase of lipid synthesis in LMH cells and causes disorders in the lipid metabolism. Moreover, NANO-Se can partially attenuate the damage caused by PDC through down-regulating of the lipid metabolism-related genes (ACACA and FASN) in LMH cells.
Collapse
Affiliation(s)
- Yuxuan Peng
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Hao Li
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Ke Shen
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Wen Pan
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Jiabin Zhang
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China
| | - Donghai Zhou
- Veterinary Clinical Medicine Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Next Generation Sequencing of Single Nucleotide Polymorphic DNA-Markers in Selecting for Intramuscular Fat, Fat Melting Point, Omega-3 Long-Chain Polyunsaturated Fatty Acids and Meat Eating Quality in Tattykeel Australian White MARGRA Lamb. Foods 2021; 10:foods10102288. [PMID: 34681337 PMCID: PMC8535056 DOI: 10.3390/foods10102288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Meat quality data can only be obtained after slaughter when selection decisions about the live animal are already too late. Carcass estimated breeding values present major precision problems due to low accuracy, and by the time an informed decision on the genetic merit for meat quality is made, the animal is already dead. We report for the first time, a targeted next-generation sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA marker signatures for TAW genetics. The SCD g.23881050T>C locus was significantly associated with IMF, C22:6n-3, and C22:5n-3; FASN g.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0, C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and reliability in directly making early and informed decisions on live sheep selection and breeding for health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level. The findings provide evidence that significant associations exist between SNP of lipid metabolism genes and n-3 LC-PUFA, IMF, and FMP, thus underpinning potential marker-assisted selection for meat-eating quality traits in TAW lambs.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan;
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, NSW 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- Correspondence: ; Tel.: +61-747-815-339
| |
Collapse
|
20
|
Ghafouri F, Bahrami A, Sadeghi M, Miraei-Ashtiani SR, Bakherad M, Barkema HW, Larose S. Omics Multi-Layers Networks Provide Novel Mechanistic and Functional Insights Into Fat Storage and Lipid Metabolism in Poultry. Front Genet 2021; 12:646297. [PMID: 34306005 PMCID: PMC8292821 DOI: 10.3389/fgene.2021.646297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Fatty acid metabolism in poultry has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. To study omics multilayers of adipose tissue and identification of genes and miRNAs involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, as well as high-throughput techniques, were used. The gene–miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. In the analysis of microarray and RNA-Seq data, 1,835 genes were detected by comparing the identified genes with significant expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ −2). Then, by comparing between different data sets, 34 genes and 19 miRNAs were detected as common and main nodes. A literature mining approach was used, and seven genes were identified and added to the common gene set. Module finding revealed three important and functional modules, which were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids, Alzheimer’s disease metabolic pathway, adipocytokine, insulin, PI3K–Akt, mTOR, and AMPK signaling pathway. This approach revealed a new insight to better understand the biological processes associated with adipose tissue.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.,Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Bakherad
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Samantha Larose
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Identification of genetic variants the CCKAR gene and based on body measurement and carcass quality characteristics in Qinchuan beef cattle (Bos taurus). ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Delgado-Pando G, Allen P, Troy DJ, McDonnell CK. Objective carcass measurement technologies: Latest developments and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in qinchuan beef cattle. Biosci Rep 2021; 40:222267. [PMID: 32110807 PMCID: PMC7069895 DOI: 10.1042/bsr20192113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
The Src homology 2 B 2 (SH2B2) gene regulate energy balance and body weight at least partially by enhancing Janus kinase-2 (JAK2)-mediated cytokine signaling, including leptin and/or GH signaling. Leptin is an adipose hormone that controls body weight. The objective of the present study is to evaluate the association between body measurement traits and SH2B2 gene polymorphisms as responsible mutations. For this purpose, we selected four single-nucleotide polymorphisms (SNPs) in SH2B2 gene, including two in intron 5 (g.20545A>G, and g.20570G>A, one synonymous SNP g.20693T>C, in exon 6 and one in intron 8 (g.24070C>A, and genotyped them in Qinchuan cattle. SNPs in sample populations were in medium polymorphism level (0.250<PIC<0.500). Association study indicated that the g.20570G>A, g.20693T>C, and g.24070C>A, significantly (P < 0.05) associated with body length (BL) and chest circumference (CC) in Qinchuan cattle. In addition, H4H3 and H5H5 diplotype had highly significantly (P < 0.01) greater body length (BL), rump length (RL), and chest circumference (CC) than H4H2. Our investigation will not only extend the spectrum of genetic variation of bovine SH2B2 gene, but also provide useful information for the marker assisted selection in beef cattle breeding program.
Collapse
|
24
|
A Non-Synonymous Single Nucleotide Polymorphism in FASN Gene Alters FASN Enzyme Activity in Subcutaneous and Intramuscular Adipose Tissue in Holstein Friesian Steers. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The FASN enzyme plays a key role in fatty acids synthesis as the main long-chain fatty acid synthesizer. A non-synonymous SNP (single nucleotide polymorphism) (g.17925A>G) located in the thioesterase domain of this enzyme and an effect in fat deposition has been observed, but has not been evaluated in this breed and, moreover, the reason whereby this occurs remains unclear. The objective of this study was to evaluate the effect of this SNP on the activity of FASN enzyme in subcutaneous and intramuscular adipose tissue from Holstein Friesian steers. To achieve this, 196 animals were sampled in a local abattoir, genotyped for the FASN g.17924A>G SNP and characterized for fatty acid profile. Then a sub-sample of 20 animals per genotype were selected to extract the total protein from subcutaneous and intramuscular adipose tissue to estimate the FASN enzyme activity. The FASN activity for each genotyped animal was assessed indirectly by measuring the decrease in the absorbance of NADPH at 340 nm by spectrophotometry in a 24 well plate in the presence of Acetyl-CoA, Malonyl-CoA, and NADPH. To assess the impact of SNP induced amino acid changes in FASN protein structure, in-silico simulations were performed. Our results indicated that FASN g.17924A>G SNP induces a change in the enzyme activity in subcutaneous adipose tissue, which is higher when the AA genotype is present and lower in the presence of the AG genotype. The in-silico analysis of the amino acid substitution shows that there was a structural change in the dimeric form of the protein between genotypes. Moreover, the global energy between subunits is lower and more favorable when the AA genotype is present and higher and less favorable for the AG genotype. It was also found that the fatty acid profile of subcutaneous adipose tissue was affected when the AG genotype was present, decreasing the C16:0 fatty acid levels and increasing the C18:0 fatty acid levels. The FASN g.17924A>G SNP alters the FASN enzyme structure and activity, leading to a variation in the fatty acid composition of subcutaneous adipose tissue in Holstein Friesian steers. Implications: This SNP could be considered as a tool to improve the fat deposition or marbling and the fatty acid profile in cattle.
Collapse
|
25
|
Liu L, Wu J, Gao Y, Lv Y, Xue J, Qin L, Xiao C, Hu Z, Zhang L, Luo X, Wang Y, Cao Y, Cao Y, Zhang G. The effect of Acot2 overexpression or downregulation on the preadipocyte differentiation in Chinese Red Steppe cattle. Adipocyte 2020; 9:279-289. [PMID: 32579860 PMCID: PMC7469445 DOI: 10.1080/21623945.2020.1776553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The quality and nutritional value of beef is closely linked to its content of intramuscular fat (IMF). The differentiation of preadipocytes and the deposition of lipid droplets in the adipocytes are the key to regulate the IMF content. The differentiation of adipocytes is regulated by a series of transcription factors and genes. Acyl-CoA thioesterase 2 (Acot2) hydrolyzes the acyl-coenzyme A (CoA) into free fatty acids and CoA and has the potential to maintain the free fatty acids and acyl CoA at the cellular level. In this work, we detected the expression of the Acot2 gene during the adipocyte differentiation in Chinese Red Steppe cattle, and then interfered and overexpressed the Acot2 gene in the preadipocytes to explore its regulatory role in the adipocyte differentiation. The results showed that the expression and regulation of Acot2 mainly occurred at the later stage of the adipocyte differentiation. The interference with the Acot2 gene significantly inhibited the lipid droplets accumulation and triglyceride content, while its overexpression significantly promoted both of them. The results of this study show that the Acot2 gene is a positive regulator of the adipocyte differentiation and may become a new target to improve the beef quality.
Collapse
Affiliation(s)
- Lixiang Liu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Jian Wu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
- Jilin Kuncheng Animal Husbandry Technology Development Co., Ltd, Gongzhuling, China
| | - Yi Gao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Lv
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Jiajia Xue
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Lihong Qin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
| | - Cheng Xiao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Zhongchang Hu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Lichun Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yanli Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Guoliang Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
- Jilin Kuncheng Animal Husbandry Technology Development Co., Ltd, Gongzhuling, China
| |
Collapse
|
26
|
Zheng XD, Cheng J, Qin WJ, Balsai N, Shang XJ, Zhang MT, Chen HQ. Whole Transcriptome Analysis Identifies the Taxonomic Status of a New Chinese Native Cattle Breed and Reveals Genes Related to Body Size. Front Genet 2020; 11:562855. [PMID: 33240316 PMCID: PMC7670488 DOI: 10.3389/fgene.2020.562855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/11/2020] [Indexed: 11/15/2022] Open
Abstract
Wandong (WD) cattle has recently been identified as a new Chinese native cattle breed by the National Commission for Livestock and Poultry Genetic Resources. The population size of this breed is less than 10,000. WD cattle and Dabieshan (DB) cattle are sympatric but are raised in different ecological environments, on mountains and plains, respectively, and the body sizes of these two breeds are markedly different. Blood samples were obtained from 8 adult female WD cattle and 7 adult female DB cattle (24 months old). The total RNA was extracted from leukocyte cells, and sequencing experiments were conducted on the Illumina HiSeqTM 4000 platform. After the removal of one outlier sample from the WD cattle breed as determined by principal component analysis (PCA), phylogenetic and population structure analyses indicated that WD and DB cattle formed a distinct Central China cattle group and showed evidence of hybridization between Bos. taurus and Bos. indicus. The immune-regulator CD48 (P = 1.3E-6) was associated with breed-specific traits according to loss-of-function variant enrichment analysis. In addition, 113 differentially expressed genes were identified between the two breeds, many of which are associated with the regulation of body growth, which is the major difference between the two breeds. This study showed that WD cattle belong to the group of hybrids between Bos. Taurus and Bos. indicus, and one novel gene associated with breed traits and multiple differentially expressed genes between these two closely related breeds was identified. The results provide insights into the genetic mechanisms that underlie economically important traits, such as body size, in cattle.
Collapse
Affiliation(s)
- Xiao-Dong Zheng
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Jin Cheng
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Wen-Juan Qin
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China.,International Immunization Center, Anhui Agricultural University, Hefei, China
| | - Nyamsuren Balsai
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Xuan-Jian Shang
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Meng-Ting Zhang
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Hong-Quan Chen
- School of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Anhui Local Livestock and Poultry Genetic Resources Conservation and Biobreeding, Hefei, China.,International Immunization Center, Anhui Agricultural University, Hefei, China
| |
Collapse
|
27
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
28
|
Overexpression of PLIN1 Promotes Lipid Metabolism in Bovine Adipocytes. Animals (Basel) 2020; 10:ani10111944. [PMID: 33105676 PMCID: PMC7690407 DOI: 10.3390/ani10111944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Perilipin 1 (PLIN1) is a protein encoded by the PLIN1 gene in eukaryotes. PLIN1 is a member of the PAT protein family, a family of proteins related to lipid droplet (LD) surface proteins. PLIN1 phosphorylation plays a vital role during fat metabolism of adipose tissue lipolysis and fat storage in adipocytes. However, to further explore the regulation of the PLIN1 gene on the proliferation, differentiation and lipid metabolism of bovine adipocytes. In this study, the mRNA expression of PLIN1, at day six, was the highest during bovine adipocyte differentiation. Moreover, PLIN1 can promote the proliferation and differentiation of preadipocytes in cattle. On the sixth day, after transfection with, and overexpression of, the PLIN1 gene in bovine preadipocytes via adenovirus, cell samples were collected, and transcriptome sequencing was performed. A total of 1923 differentially expressed genes were detected. Through GO and KEGG pathway analysis, the differentially expressed genes were established to be mainly enriched in the AMPK, Wnt, and PPAR signaling pathways related to fat proliferation and differentiation. In conclusion, at the transcriptional level, PLIN1 plays an important role in regulating fat proliferation and metabolism. Additionally, the sequencing results screened new differentially expressed genes related to fat metabolism, providing theoretical support for molecular breeding of Qinchuan beef cattle.
Collapse
|
29
|
Raza SHA, Liu GY, Zhou L, Gui LS, Khan R, Jinmeng Y, Chugang M, Schreurs NM, Ji R, Zan L. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene 2020; 758:144957. [PMID: 32683081 DOI: 10.1016/j.gene.2020.144957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/01/2022]
Abstract
Leptin receptor (LEPR) gene play a pivotal role in the regulation of fat deposition and energy homeostasis. This study investigated the presence and frequency of polymorphisms of bovine LEPR gene and determine whether the polymorphisms are associated with the fat deposition in two Chinese beef cattle breeds. Quantitative real-time polymerase chain reactions identified that the expression of LEPR gene was highest in the liver and subcutaneous fat. Four single nucleotide polymorphisms (SNPs) were identified including g.24169C > T, g.24256T > A, g.24267 G > C and g.24413T > A. A greater backfat thickness was associated with the AA genotype of g.24256T > A compared to the TT genotype. A greater intramuscular fat content was associated with the GG genotype of g.24267 G > C compared to the CC genotype. Both g.24169C > T and g.24413T > A were not correlated with fat deposition. These results indicated that the SNP g.24256T > A and g.24267 G > C of LEPR gene may be useful markers for genetic improvement of fat deposition in Chinese beef cattle breeds.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China.
| | - Gui-Yao Liu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, Jiangxi Province 332005, PR China
| | - Li Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, PR China
| | - Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, PR China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Jinmeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mei Chugang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rodany Ji
- Utah State University, School of Animal Dairy and Veterinary Sciences, Logan, UT, 84322, USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China.
| |
Collapse
|
30
|
Raza SHA, Shijun L, Khan R, Schreurs NM, Manzari Z, Abd El-Aziz AH, Ullah I, Kaster N, Shah MA, Zan L. Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome 2020; 63:483-492. [PMID: 32615043 DOI: 10.1139/gen-2019-0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The PLIN1 gene produces a phosphorylated protein wrapped in lipid droplets in adipocytes. This phosphorylation assists the mobilization of fat into adipose tissue. The purpose of the experiment was to study the polymorphism of the PLIN1 gene and its relationship with the body and carcass characteristics of Qinchuan cattle to find molecular genetic markers that can be used for breeding. The expression level of the PLIN1 gene was determined in various tissues by qRT-PCR. The results showed that the highest level of PLN1 expression was found in subcutaneous fat, followed by the heart and longissimus muscle, and the lowest level was found in the kidney. Five SNP loci of the PLIN1 gene were identified in 510 Qinchuan cattle, including g.3580T>C (SNP1), g.3898G>A (SNP2), g.8333G>A (SNP3), g.10517T>C (SNP4), and g.10538G>T (SNP5). The results show that SNP1, SNP2, SNP3, and SNP4 were moderately polymorphic (0.25 < PIC < 0.5), while SNP5 was minimally polymorphic (PIC < 0.25). SNP2, SNP3, and SNP5 were within Hardy-Weinberg equilibrium (P > 0.05), but SNP1 and SNP4 were not (P < 0.05). Correlation analysis showed that the five SNPs of the PLIN1 gene were correlated with back-fat depth, intramuscular fat, and chest depth of Qinchuan cattle. The double haplotype H2H4 in Qinchuan beef was associated with body and carcass traits. We conclude that variants mapped within PLIN1 can be used in marker-assisted selection for carcass quality and body traits in breed improvement programs for Qinchuan cattle.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Li Shijun
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zeinab Manzari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Irfan Ullah
- Department of Biological Science, Karakoram International University, Ghizer Campus, Gilgit, Baltistan 15200, Pakistan
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Mujahid Ali Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China.,National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| |
Collapse
|
31
|
Gui LS, Raza SHA, Memon S, Li Z, Abd El-Aziz AH, Ullah I, Jahejo AR, Shoorei H, Khan R, Quan G, Liu GY. Association of hormone-sensitive lipase (HSL) gene polymorphisms with the intramuscular fat content in two Chinese beef cattle breeds. Genomics 2020; 112:3883-3889. [PMID: 32619575 DOI: 10.1016/j.ygeno.2020.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
Hormone-sensitive lipase (HSL) was considered as an essential enzyme in glucolipid metabolism. It has been proposed to be a lead candidate gene for genetic markers of lipid deposition in livestock. The aim of this study was to identify sequence variants (SVs) of the bovine HSL gene and evaluate the relations to intramuscular fat in two indigenous Chinese beef cattle breeds. Expression analysis by quantitative real-time polymerase chain reactions (qPCR) indicated that expression levels of bovine HSL gene were highest in the perirenal fat and heart within two different age stage (adult and calf), respectively. Five SVs were identified by direct DNA sequencing, which included four missense mutations (g.16563C>T, g.16734G>A, g.16896A>G, g.17388G>T) in exon 8 and a synonymous mutation (g.17402C>T) in exon 9. Population genetic analysis showed that except for g.16563C>T and g.17402C>T, all the other detected SVs strongly affected the bovine intramuscular fat content (P < 0.01 or P < 0.05). The individuals with Hap5/5 diplotypes (CC-GG-GG-GG-CC) was highly significantly associated with intramuscular fat content than the other diplotypes (P < 0.01). The above results suggested that the HSL gene can used as potential candidate markers gene for the beef breed improvement through marker assisted selection in Chinese cattle breeds.
Collapse
Affiliation(s)
- Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People's Republic of China
| | - Zhou Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Irfan Ullah
- Department of Biological Science, Karakoram International University, Ghizer Campus, Gilgit, Baltistan 15200, Pakistan
| | - Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People's Republic of China.
| | - Gui Yao Liu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, Jiangxi Province 332005, People's Republic of China.
| |
Collapse
|
32
|
The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed. Res Vet Sci 2020; 132:202-206. [PMID: 32604043 DOI: 10.1016/j.rvsc.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
Melanocortin-4 receptor (MC4R) was considered as an essential modifiers in feelings intake, the regulation of metabolism and body weight. This study aimed at identifying polymorphisms in MC4R gene that might associate with carcass quality traits in Chinese indigenous beef cattle breed. qPCR analysis showed that the MC4R gene was widely expressed in various tissues, with predominantly expression levels in heart. Three single-nucleotide polymorphisms (SNPs) were identified, including a mutation (g.85A > G) in 5'untranslated regions (UTR) and two mutations (g.927C > T and g.1069C > G) in exon 1. Based on the χ2 test, both g.927C > T and g.1069C > G loci fitted with Hardy-Weinberg equilibrium (P > .05). Population genetic analysis showed that except for g.85A > G, the other detected SNPs strongly affected the bovine back fat thickness and intramuscular fat content (P < .05). The individuals with Hap1/4 diplotypes (ACC-ATG) were highly significantly associated with carcass quality traits than the other diplotypes (P < .01 or P < .05). Results indicated that the bovine MC4R gene polymorphisms were implicated as genetic markers of potential importance in marker-assisted selection (MAS) strategies to improve carcass quality in Chinese Qinchuan cattle.
Collapse
|
33
|
Function and characterization of the promoter region of perilipin 1 (PLIN1): Roles of E2F1, PLAG1, C/EBPβ, and SMAD3 in bovine adipocytes. Genomics 2020; 112:2400-2409. [DOI: 10.1016/j.ygeno.2020.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
|
34
|
Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics 2020; 112:2804-2812. [PMID: 32220486 DOI: 10.1016/j.ygeno.2020.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Myogenic factor 5 plays actively roles in the regulation of myogenesis. The aims of this study are to identify the evolution information of MYF5 protein among 10 domestic and mammalian animals, to uncover the expression patterns of MYF5 gene in calves and adults of Qinchuan cattle, and to expose the genetic variants of the MYF5 gene and explore its effect on cattle growth traits and beef quality traits in Qinchuan cattle. The bioinformatics results showed that the MYF5 proteins highly conserved in different mammalian or domestic animals apart from chicken. The expression level of MYF5 gene in the heart, muscle, lung, large intestine and liver was greater than that of other tissues. PCR amplicons sequencing identified four novel SNPs at g.5738A>G, g.5785C>T and g.5816A>G in the 3rd exon region and g.6535A>G in the 3' UTR. Genotypic frequencies of g.5785C>T was harshly deviated from the HWE (P < .05). Genetic diversity was low or intermediate for the four SNPs and those SNPs were in the weak linkage disequilibrium. Association analysis results indicated g.5785C>T, g.5816A>G and g.6535A>G significant effect on growth performance and beef quality traits of Qinchuan cattle. H1H3 diplotype had greater body size and better beef quality. All the results implicate that the MYF5 gene might be applied as a promising candidate gene in Qinchuan cattle breeding.
Collapse
|
35
|
Khan R, Raza SHA, Schreurs N, Xiaoyu W, Hongbao W, Ullah I, Rahman A, Suhail SM, Khan S, Linsen Z. Bioinformatics analysis and transcriptional regulation of TORC1 gene through transcription factors NRF1 and Smad3 in bovine preadipocytes. Genomics 2020; 112:1575-1587. [DOI: 10.1016/j.ygeno.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
|
36
|
Khan R, Raza SHA, Guo H, Xiaoyu W, Sen W, Suhail SM, Rahman A, Ullah I, Abd El-Aziz AH, Manzari Z, Alshawi A, Zan L. Genetic variants in the TORC2 gene promoter and their association with body measurement and carcass quality traits in Qinchuan cattle. PLoS One 2020; 15:e0227254. [PMID: 32059009 PMCID: PMC7021310 DOI: 10.1371/journal.pone.0227254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
The TORC2 gene is responsible for nutrient metabolism, gluconeogenesis, myogenesis and adipogenesis through the PI3K-Akt, AMPK, glucagon and insulin resistance signaling pathways. Sequencing of PCR amplicons explored three novel SNPs at loci g.16534694G>A, g.16535011C>T, and g.16535044A>T in the promoter region of the TORC2 gene in the Qinchuan breed of cattle. Allelic and genotypic frequencies of these SNPs deviated from Hardy-Weinberg equilibrium (HWE) (P < 0.05). SNP1 genotype GG, SNP2 genotype CT and SNP3 genotype AT showed significantly (P <0.05) larger body measurement and improved carcass quality traits. Haplotype H1 (GCA) showed significantly (p<0.01) higher transcriptional activity (51.44%) followed by H4 (ATT) (34.13%) in bovine preadipocytes. The diplotypes HI-H3 (GG-CC-AT), H1-H2 (GG-CT-AT) and H3-H4 (GA-CT-TT) showed significant (P<0.01) associations with body measurement and improved carcass quality traits. Analysis of the relative mRNA expression level of the TORC2 gene in different tissues within two different age groups revealed a significant increase (P<0.01) in liver, small intestine, muscle and fat tissues with growth from calf stage to adult stage. We can conclude that variants mapped within TORC2 can be used in marker-assisted selection for carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hongfang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wang Xiaoyu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wu Sen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- College of Bio-medical Engineering, Chongqing University, Chongqing, China
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Zeinab Manzari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Akil Alshawi
- School of Life Science University of Nottingham, Nottingham, United Kingdom
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- National Beef Cattle Improvement Research Center, Yangling, China
| |
Collapse
|
37
|
Evaluation of SCD, ACACA and FASN Mutations: Effects on Pork Quality and Other Production Traits in Pigs Selected Based on RNA-Seq Results. Animals (Basel) 2020; 10:ani10010123. [PMID: 31940936 PMCID: PMC7023423 DOI: 10.3390/ani10010123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study aimed to evaluate mutations within three candidate genes (SCD, ACACA, FASN) for their effects on fattening and slaughter characteristics, as well as meat quality traits, including intramuscular fat (IMF) level in pork. They were selected within differentially expressed genes activated in response to variable backfat content obtained using the RNA sequencing method. The RNA-seq analysis identifies mutations/SNPs located in the mRNA and could be a useful tool for prediction of genetic markers in farm animals. The results showed that selection for FASN A allele in Polish Large White pigs could lead to improved meat quality traits such as water exudation and meat colour. However, analysed polymorphisms showed only slight effects on fat metabolism and IMF content. Abstract In recent years, pig producers have struggled with the problem of low intramuscular fat levels in pork, which impacts palatability and ultimately meat quality. Reduced levels of intramuscular fat are likely the result of breeding objectives aimed at increasing lean meat content. In this study, three mutations within candidate genes for fat content (SCD, ACACA, and FASN) were selected, based on RNA-seq results and the relationship between polymorphisms in genes related to lipid metabolism, fattening and slaughter characteristics, as well as pork quality, including IMF level, were evaluated to identify selection markers. Moreover, their impact on gene expression was also examined. The PCR–RFLP (polymerase cha- in reaction – restriction fragments length) method was used to establish genotypes and effect sizes of potential genetic markers were estimated using a GLM model. It was identified that a FASN missense variant was positively associated with the expression level of this gene, which suggested its linkage with a mutation having a regulatory function. The association study indicated that the FASN missense variant may play a role in the determination of feed conversion and meat colour. In turn, a mutation in the ACACA gene showed a relationship with IMF content in the Puławska breed where the differences reached as much as 20%. We suggest considering all three mutations in further studies based on different pig populations due to the crucial role of SCD, ACACA, and FASN genes in lipid metabolism.
Collapse
|
38
|
Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos Taurus). Genomics 2020; 112:423-431. [DOI: 10.1016/j.ygeno.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/02/2023]
|
39
|
Junjvlieke Z, Khan R, Mei C, Cheng G, Wang S, Raza SHA, Hong J, Wang X, Yang W, Zan L. Effect of ELOVL6 on the lipid metabolism of bovine adipocytes. Genomics 2019; 112:2282-2290. [PMID: 31901374 DOI: 10.1016/j.ygeno.2019.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
This study investigated the effect of ELOVL6 (elongation of very long chain fatty acids protein 6) and its underlying mechanism on lipid metabolism in bovine adipocytes. The ELOVL6 gene was overexpressed in bovine adipocytes by adenoviruses, and RNA sequencing was performed. Overexpression of ELOVL6 showed reduced proportions of C14:0 (Myristic) and C16:0 (palmitate) fatty acids and increased proportions of C18.0 (stearate) and C20:4n6 (arachidonic) fatty acids in adipocytes. In addition, a total of 2170 differentially expressed genes (DEGs) were found, containing 1802 up-regulated and 368 down-regulated genes. KEGG pathway analysis revealed that the down-regulated genes were linked with the regulation of lipolysis and the Wnt signaling pathway. The up-regulated genes were mainly involved in the FoxO signaling pathway; the PI3K-Akt signaling pathway; and the cAMP signaling pathway. In conclusion, our results suggest that ELOVL6 could affect the fatty acid composition in bovine adipocytes. We identified numerous related DEGs and pathways, which may provide a basis for studying the function and molecular mechanism of the ELOVL6 gene in regulating lipid metabolism.
Collapse
Affiliation(s)
- Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Biological and Geographical Sciences, Yili Normal University, Yining 835000, China.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Jieyun Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Khan R, Raza SHA, Junjvlieke Z, Wang H, Cheng G, Smith SB, Jiang Z, Li A, Zan L. RNA-seq reveal role of bovine TORC2 in the regulation of adipogenesis. Arch Biochem Biophys 2019; 680:108236. [PMID: 31893525 DOI: 10.1016/j.abb.2019.108236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Low intramuscular adipose tissue (marbling) continues to be challenge for improving beef quality in Chinese cattle. Highly marbled meat is very desirable; hence, methods to increase IMF content have become a key aspect of improving meat quality. Therefore, research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality. This study investigated the effect of TORC2 and its underlying mechanism on lipid metabolism in bovine adipocytes. The TORC2 gene was downregulated in bovine adipocytes by siRNA, and RNA sequencing was performed. Downregulation of TORC2 negatively affected bovine adipocyte differentiation. In addition, a total of 577 DEGs were found, containing 146 up-regulated and 376 down-regulated genes. KEGG pathway analysis revealed that the DEGs were linked with neuroactive ligand-receptor interaction pathway, calcium signaling pathway, cAMP pathway, chemokine signaling pathway and Wnt signaling pathway. Gene Ontology (GO) term analysis of the DEGs showed that down-regulation of TORC2 gene significantly suppressed the genes regulating important GO terms of adipogenesis-related processes in bovine adipocytes, especially regulation of biological activity, regulation of primary metabolic process, regulation of multicellular organismal process, cell adhesion, lipid metabolic process, secretion, chemical homeostasis, regulation of transport, cell-cell signaling, cAMP metabolic process, cellular calcium ion homeostasis, fat cell differentiation, and cell maturation. In conclusion, our results suggest that TORC2 at least in part regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the TORC2 gene in regulating adipogenesis.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
41
|
Liang C, Li A, Raza SHA, Khan R, Wang X, Wang S, Wang G, Zhang Y, Zan L. The Molecular Characteristics of the FAM13A Gene and the Role of Transcription Factors ACSL1 and ASCL2 in Its Core Promoter Region. Genes (Basel) 2019; 10:genes10120981. [PMID: 31795267 PMCID: PMC6947481 DOI: 10.3390/genes10120981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
The gene family with sequence similarity 13 member A (FAM13A) has recently been identified as a marker gene in insulin sensitivity and lipolysis. In this study, we first analyzed the expression patterns of this gene in different tissues of adult cattle and then constructed a phylogenetic tree based on the FAM13A amino acid sequence. This showed that subcutaneous adipose tissue had the highest expression in all tissues except lung tissue. Then we summarized the gene structure. The promoter region sequence of the gene was successfully amplified, and the -241/+54 region has been identified as the core promoter region. The core promoter region was determined by the unidirectional deletion of the 5' flanking promoter region of the FAM13A gene. Based on the bioinformatics analysis, we examined the dual luciferase activity of the vector constructed by the mutation site, and the transcription factors ACSL1 and ASCL2 were found as transcriptional regulators of FAM13A. Moreover, electrophoretic mobility shift assay (EMSA) further validated the regulatory role of ACSL1 and ASCL2 in the regulation of FAM13A. ACSL1 and ASCL2 were finally identified as activating transcription factors. Our results provide a basis for the function of the FAM13A gene in bovine adipocytes in order to improve the deposition of fat deposition in beef cattle muscle.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
42
|
Raza SHA, Khan R, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Taha A, Ohran H, Mei C, Schreurs NM, Zan L. Advances of Molecular Markers and Their Application for Body Variables and Carcass Traits in Qinchuan Cattle. Genes (Basel) 2019; 10:E717. [PMID: 31533236 PMCID: PMC6771018 DOI: 10.3390/genes10090717] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022] Open
Abstract
This review considers the unique characteristics of Chinese cattle and intramuscular fat content (IMF) as factors influencing meat quality, including tenderness, flavor, and juiciness of meat. Due to its nutritional qualities, meat contributes to a healthy and balanced diet. The intramuscular fat content and eating quality of beef are influenced by many factors, which can generally be divided into on-farm and pre-slaughter factors (breed, sex of cattle, age at slaughter, housing system, diet, and pre-slaughter handling) and postmortem factors (post-slaughter processing, chilling temperature, and packaging). Meat quality traits can also be influenced by the individual genetic background of the animal. Worldwide, the function of genes and genetic polymorphisms that have potential effects on fattening of cattle and beef quality have been investigated. The use of DNA markers is recognized as a powerful and efficient approach to achieve genetic gain for desirable phenotypic characteristics, which is helpful for economic growth. The polymorphisms of the SIRT4, SIRT6, SIRT7, CRTC3, ABHD5, KLF6, H-FABP, and ELOVL6 genes for body and growth characteristics of cattle, and also for beef quality, are considered with the aim of highlighting the significance of beef intramuscular fat content, and that growth, body, and meat quality characteristics are polygenically regulated.
Collapse
Affiliation(s)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt.
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne Sarajevo 9071000, Bosnia and Herzegovina.
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
43
|
Function and Transcriptional Regulation of Bovine TORC2 Gene in Adipocytes: Roles of C/EBP, XBP1, INSM1 and ZNF263. Int J Mol Sci 2019; 20:ijms20184338. [PMID: 31487963 PMCID: PMC6769628 DOI: 10.3390/ijms20184338] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
The TORC2 gene is a member of the transducer of the regulated cyclic adenosine monophosphate (cAMP) response element binding protein gene family, which plays a key role in metabolism and adipogenesis. In the present study, we confirmed the role of TORC2 in bovine preadipocyte proliferation through cell cycle staining flow cytometry, cell counting assay, 5-ethynyl-2′-deoxyuridine staining (EdU), and mRNA and protein expression analysis of proliferation-related marker genes. In addition, Oil red O staining analysis, immunofluorescence of adiponectin, mRNA and protein level expression of lipid related marker genes confirmed the role of TORC2 in the regulation of bovine adipocyte differentiation. Furthermore, the transcription start site and sub-cellular localization of the TORC2 gene was identified in bovine adipocytes. To investigate the underlying regulatory mechanism of the bovine TORC2, we cloned a 1990 bp of the 5’ untranslated region (5′UTR) promoter region into a luciferase reporter vector and seven vector fragments were constructed through serial deletion of the 5′UTR flanking region. The core promoter region of the TORC2 gene was identified at location −314 to −69 bp upstream of the transcription start site. Based on the results of the transcriptional activities of the promoter vector fragments, luciferase activities of mutated fragments and siRNAs interference, four transcription factors (CCAAT/enhancer-binding protein C/BEPγ, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc finger protein 263 ZNF263) were identified as the transcriptional regulators of TORC2 gene. These findings were further confirmed through Electrophoretic Mobility Shift Assay (EMSA) within nuclear extracts of bovine adipocytes. Furthermore, we also identified that C/EBPγ, XBP1, INSM1 and ZNF263 regulate TORC2 gene as activators in the promoter region. We can conclude that TORC2 gene is potentially a positive regulator of adipogenesis. These findings will not only provide an insight for the improvement of intramuscular fat in cattle, but will enhance our understanding regarding therapeutic intervention of metabolic syndrome and obesity in public health as well.
Collapse
|
44
|
Mechanical and Biochemical Methods for Rigor Measurement: Relationship with Eating Quality. J FOOD QUALITY 2019. [DOI: 10.1155/2019/1894543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Meat quality parameters are affected by a complex series of interacting chemical, biochemical, physical, and physiological components that determine not only the suitability for consumption and the conditions for further processing and storage but also consumer acceptability. Deep understanding and careful manipulation of these intrinsic and extrinsic factors have to be taken in account to ensure high quality of meat, with better technological properties and increased safety for consumers. Among meat quality characteristics, meat tenderness has been perceived as the most important factor governing consumer acceptability. Therefore, being able to early predict meat texture and other related parameters in order to guarantee consistent eating quality to the final consumer is one of the most sought-after goals in the meat industry. Accurate measurements of both the biochemical and mechanical characteristics that underpin muscle and its transformation into meat are key factors to an improved understanding of meat quality, but also this early-stage measurements may be useful to develop methods to predict final meat texture. It is the goal of this review to present the available research literature on the historical and contemporary analyses that could be applied in early postmortem stages (pre-rigor and rigor) to determine the biochemical and physical characteristics of the meat that can potentially impact the eating quality.
Collapse
|
45
|
The effect of haplotypes in the promoter region of SIRT4 gene on the ultrasound traits in Qinchuan cattle. Trop Anim Health Prod 2019; 51:1877-1882. [PMID: 30963403 DOI: 10.1007/s11250-019-01881-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Sirtuin 4 (SIRT4) belongs to the mitochondrial sirtuin class of NAD+-dependent protein deacylases. This gene plays an important role in the regulation of lipid metabolism, cellular growth, and metabolism in mammals. Here, potential polymorphisms were sought in the bovine SIRT4 gene, and the relationships between the detected polymorphisms and carcass quality in Qinchuan cattle were assessed. Four single nucleotide polymorphisms (SNPs) were identified in the promoter region of the SIRT4 gene from the sequencing results of 452 individual cattle. A total of 8 different haplotypes were identified. Of these, the 3 most frequently observed haplotypes had frequencies of 35.0% (-CTG-), 18.3% (-CTA-), and 12.9% (-CCG-). The frequencies of g.-311C > T, g.-771C > T, and g.-1022G > A conformed to Hardy-Weinberg equilibrium in all the samples (chi-square test, P < 0.05). The association analysis indicated that these 3 polymorphisms were significantly associated with subcutaneous fat depth and intramuscular fat content (at P < 0.01 or P < 0.05). Interestingly, the Hap1/2 (-CAG-CAA-) diplotype was more highly associated with desirable ultrasound than other haplotype combinations.
Collapse
|
46
|
Gui LS, Raza SHA, Sun YG, Khan R, Ullah I, Han YC. Detection of polymorphisms in the promoter of bovine SIRT1 gene and their effects on intramuscular fat content in Chinese indigenous cattle. Gene 2019; 700:47-51. [PMID: 30902782 DOI: 10.1016/j.gene.2019.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Intramuscular fat content (IMF) is one of the most significant factors for meat quality affecting tenderness, flavor, and juiciness of meat. For this reason, we aimed to investigate the association of SIRT1 gene polymorphisms with intramuscular fat content in Chinese Qinchuan cattle (Bos taurus). Using DNA sequencing, three single nucleotide polymorphisms (SNPs) within the promoter regions of SIRT1 gene were identified in 535 Qinchuan cattle, and the five haplotypes representing five potential different compositions of polymorphic potential cis-acting elements. Results indicated that both c.-107 G>A and c.-274 A>G were significantly associated with intramuscular fat content in Qinchuan cattle, and Hap5/5 diplotype showed higher (P < 0.05) intramuscular fat content than other combinations (P < 0.05 or P < 0.01). In addition, the Hap5 haplotype had much lower (P < 0.05) transcriptional activity, consistent with the association analysis. Based on our results, the polymorphisms in transcription factor binding sites of SIRT1 gene promoter may affect the transcriptional activity of SIRT1 gene, and thus alter intramuscular fat content in beef cattle.
Collapse
Affiliation(s)
- Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China; College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yong-Gang Sun
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Irfan Ullah
- College of Bio-medical Engineering, Chongqing University, Chongqing, China
| | - Yin-Cang Han
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China.
| |
Collapse
|
47
|
Guo H, Raza SHA, Schreurs NM, Khan R, Wei D, Wang L, Zhang S, Zhang L, Wu S, Ullah I, Hosseini SM, Zan L. Genetic variants in the promoter region of the KLF3 gene associated with fat deposition in Qinchuan cattle. Gene 2018; 672:50-55. [DOI: 10.1016/j.gene.2018.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
|
48
|
Guo H, Khan R, Raza SHA, Ning Y, Wei D, Wu S, Hosseini SM, Ullah I, Garcia MD, Zan L. KLF15 promotes transcription of KLF3 gene in bovine adipocytes. Gene 2018; 659:77-83. [DOI: 10.1016/j.gene.2018.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
|