1
|
Itai T, Yan F, Liu A, Dai Y, Iwaya C, Curtis SW, Leslie EJ, Simon LM, Jia P, Chen X, Iwata J, Zhao Z. Investigating gene functions and single-cell expression profiles of de novo variants in orofacial clefts. HGG ADVANCES 2024; 5:100313. [PMID: 38807368 PMCID: PMC11318074 DOI: 10.1016/j.xhgg.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Molecular Characterization, Expression Profile, and A 21-bp Indel within the ASB9 Gene and Its Associations with Chicken Production Traits. Genes (Basel) 2023; 14:genes14020339. [PMID: 36833266 PMCID: PMC9957280 DOI: 10.3390/genes14020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A growing number of studies have shown that members of the ankyrin repeat and suppressors of cytokine signaling (SOCS) box-containing protein (ASB) family are extensively involved in biological processes such as cell growth, tissue development, insulin signaling, ubiquitination, protein degradation, and skeletal muscle membrane protein formation, while the specific biological role of ankyrin-repeat and SOCS box protein 9 (ASB9) remains unclear. In this study, a 21 bp indel in the intron of ASB9 was identified for the first time in 2641 individuals from 11 different breeds and an F2 resource population, and differences were observed among individuals with different genotypes (II, ID, and DD). An association study of a cross-designed F2 resource population revealed that the 21-bp indel was significantly related to growth and carcass traits. The significantly associated growth traits were body weight (BW) at 4, 6, 8, 10, and 12 weeks of age; sternal length (SL) at 4, 8, and 12 weeks of age; body slope length (BSL) at 4, 8, and 12 weeks of age; shank girth (SG) at 4 and 12 weeks of age; tibia length (TL) at 12 weeks of age; and pelvic width (PW) at 4 weeks of age (p < 0.05). This indel was also significantly correlated with carcass traits including semievisceration weight (SEW), evisceration weight (EW), claw weight (CLW), breast muscle weight (BMW), leg weight (LeW), leg muscle weight (LMW), claw rate (CLR), and shedding weight (ShW) (p < 0.05). In commercial broilers, the II genotype was the dominant genotype and underwent extensive selection. Interestingly, the ASB9 gene was expressed at significantly higher levels in the leg muscles of Arbor Acres broilers than those of Lushi chickens, while the opposite was true for the breast muscles. In summary, the 21-bp indel in the ASB9 gene significantly influenced the expression of the ASB9 gene in muscle tissue and was associated with multiple growth and carcass traits in the F2 resource population. These findings suggested that the 21-bp indel within the ASB9 gene could be used in marker-assisted selection breeding for traits related to chicken growth.
Collapse
|
4
|
Lansdon LA, Dickinson A, Arlis S, Liu H, Hlas A, Hahn A, Bonde G, Long A, Standley J, Tyryshkina A, Wehby G, Lee NR, Daack-Hirsch S, Mohlke K, Girirajan S, Darbro BW, Cornell RA, Houston DW, Murray JC, Manak JR. Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes. Am J Hum Genet 2023; 110:71-91. [PMID: 36493769 PMCID: PMC9892779 DOI: 10.1016/j.ajhg.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well established that common and rare sequence variants contribute to the formation of CL/P, but the contribution of copy-number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed; however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our cohort of individuals with clefts compared to control subjects, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR-Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology, University of Missouri - Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | | - Sydney Arlis
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Arman Hlas
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alyssa Hahn
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Abby Long
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | - George Wehby
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | | | - Karen Mohlke
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | - Benjamin W Darbro
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Robert A Cornell
- Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas W Houston
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Genetics Program, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Li T, Qin P, Chen B, Niu X, Wang Y, Niu Y, Wei C, Hou D, Ma H, Han R, Li H, Liu X, Kang X, Li Z. A novel 27-bp indel in the intron region of the YBX3 gene is associated with growth traits in chickens. Br Poult Sci 2022; 63:590-596. [PMID: 35382648 DOI: 10.1080/00071668.2022.2059340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The DNA/RNA binding protein YBX3 is associated with gene transcription, DNA repair, and the progression of various diseases and is highly conserved from bacteria to humans.2. The following experiment found a 27-bp insertion/deletion polymorphism in the intron region of the YBX3 gene through resequencing. In cross-designed, F2 resource groups, the indel was significantly associated with broiler weight and body size at 0, 2, 4, 6, 8, 10 and 12 weeks of age and several other traits (semi evisceration weight (SEW), evisceration weight (EW), semi evisceration rate (SER), evisceration rate (ER), head weight (HW), claw weight (CLW), wing weight (DWW), gizzard weight (GW), pancreas weight (PW), chest muscle weight (CMW), leg weight (LW), leg muscle weight (LMW), shedding weight (SW), carcass weight (CW) and pectoral area (PA)) (P<0.05).3. The insertion-insertion (II) genotype was significantly associated with the greatest growth traits and carcass traits, whereas the values associated with the insertion-deletion (ID) genotype were the lowest in the F2 reciprocal cross chickens.4. The mutation sites were genotyped in 3611 individuals from 13 different chicken breeds and cross-designed F2 resource groups. The II genotype is the most important in commercial broilers, and the I allele frequency observed in these breeds was relatively high. However, there is still considerable potential in breeding dual-purpose chickens and commercial laying hens.5. The mRNA expression of the YBX3 gene in tissues from different breeds and developmental stages demonstrated that the 27-bp indel may affect the entire development process of poultry by affecting muscle development. These findings are beneficial for elucidating the function of the YBX3 gene and facilitating enhanced reproduction in the chicken industry.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoxiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
7
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
8
|
Stüssel LG, Hollstein R, Laugsch M, Hochfeld LM, Welzenbach J, Schröder J, Thieme F, Ishorst N, Romero RO, Weinhold L, Hess T, Gehlen J, Mostowska A, Heilmann-Heimbach S, Mangold E, Rada-Iglesias A, Knapp M, Schaaf CP, Ludwig KU. MiRNA-149 as a Candidate for Facial Clefting and Neural Crest Cell Migration. J Dent Res 2021; 101:323-330. [PMID: 34528480 DOI: 10.1177/00220345211038203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsyndromic cleft lip with or without palate (nsCL/P) ranks among the most common human birth defects and has a multifactorial etiology. Human neural crest cells (hNCC) make a substantial contribution to the formation of facial bone and cartilage and are a key cell type in terms of nsCL/P etiology. Based on increasing evidence for the role of noncoding regulatory mechanisms in nsCL/P, we investigated the role of hNCC-expressed microRNAs (miRNA) in cleft development. First, we conducted a systematic analysis of miRNAs expressed in human-induced pluripotent stem cell-derived hNCC using Affymetrix microarrays on cell lines established from 4 unaffected donors. These analyses identified 152 candidate miRNAs. Based on the hypothesis that candidate miRNA loci harbor genetic variation associated with nsCL/P risk, the genomic locations of these candidates were cross-referenced with data from a previous genome-wide association study of nsCL/P. Associated variants were reanalyzed in independent nsCL/P study populations. Jointly, the results suggest that miR-149 is implicated in nsCL/P etiology. Second, functional follow-up included in vitro overexpression and inhibition of miR-149 in hNCC and subsequent analyses at the molecular and phenotypic level. Using 3'RNA-Seq, we identified 604 differentially expressed (DE) genes in hNCC overexpressing miR-149 compared with untreated cells. These included TLR4 and JUNB, which are established targets of miR-149, and NOG, BMP4, and PAX6, which are reported nsCL/P candidate genes. Pathway analyses revealed that DE genes were enriched in pathways including regulation of cartilage development and NCC differentiation. At the cellular level, distinct hNCC migration patterns were observed in response to miR-149 overexpression. Our data suggest that miR-149 is involved in the etiology of nsCL/P via its role in hNCC migration.
Collapse
Affiliation(s)
- L G Stüssel
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Hollstein
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - M Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L M Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - F Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - N Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Olmos Romero
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L Weinhold
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - T Hess
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - J Gehlen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - A Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - S Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - E Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - A Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Biomedicine and Biotechnology, University of Cantabria, Santander, Spain
| | - M Knapp
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - C P Schaaf
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - K U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Mao C, Ju X, Cheng H, Huang X, Jiang F, Yao Y, Lan X, Song E. Determination of genetic variation within the DYRK2 gene and its associations with milk traits in cattle. Arch Anim Breed 2020; 63:315-323. [PMID: 32964102 PMCID: PMC7500071 DOI: 10.5194/aab-63-315-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/25/2020] [Indexed: 11/11/2022] Open
Abstract
To speed up the progress of marker-assisted selection (MAS) in cattle
breeding, the dual-specificity tyrosine phosphorylation-regulated kinase 2
(DYRK2), cadherin 2 (CDH2), and kinesin family member 1A (KIF1A) genes were chosen based
on our pervious genome-wide association study (GWAS) analysis results.
DYRK2 is a kinase that may participate in cell growth and/or development; it
shows phosphorylation activity toward serine, threonine, and tyrosine
fragments of proteins, and it is different from other protein kinases. The CDH2 gene
encodes a classic cadherin, which is a member of the cadherin superfamily. The
protein encoded by KIF1A is a member of the kinesin family and plays a role in
the transportation of membrane organelles along axon microtubules. We
detected insertion/deletion (InDel) variation in these three candidate genes
in 438 individual cattle (Xinjiang Brown cattle and Wagyu × Luxi
crossbreed cattle). Only DYRK2-P3-11 bp was polymorphic and genotyped. The
polymorphism information content of DYRK2-P3-11 bp was 0.336. Correlation analyses
showed that InDel polymorphism was significantly associated with six
different milk traits. These findings may aid future analyses of InDel
genotypes in cattle breeds, and speed up the progress of MAS in cattle
breeding.
Collapse
Affiliation(s)
- Cui Mao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Xing Ju
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, 830000, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haijian Cheng
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Xixia Huang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, 830000, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Yuni Yao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China.,College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250000, China
| |
Collapse
|
10
|
Yang K, Dong XY, Wu J, Zhu JJ, Tan Y, Yan YS, Lin L, Zhang DL. A clinical and multi‑omics study of Van der Woude syndrome in three generations of a Chinese family. Mol Med Rep 2020; 22:2925-2931. [PMID: 32945398 PMCID: PMC7457716 DOI: 10.3892/mmr.2020.11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Previous studies have suggested that pathogenic variants in interferon regulatoryse factor 6 (IRF6) can account for almost 70% of familial Van der Woude Syndrome (VWS) cases. However, gene modifiers that account for the phenotypic variability of IRF6 in the context of VWS remain poorly characterized. The aim of this study was to report a family with VWS with variable expressivity and to identify the genetic cause. A 4-month-old boy initially presented with cleft palate and bilateral lower lip pits. Examination of his family history identified similar, albeit milder, clinical features in another four family members, including bilateral lower lip pits and/or hypodontia. Peripheral blood samples of eight members in this three-generation family were subsequently collected, and whole-exome sequencing was performed to detect pathogenic variants. A heterozygous missense IRF6 variant with a c.1198C>T change in exon 9 (resulting in an R400W change at the amino acid level) was detected in five affected subjects, but not in the other three unaffected subjects. Moreover, subsequent structural analysis was indicative of damaged stability to the structure in the mutant IRF protein. Whole-transcriptome sequencing, expression analysis and Gene Ontology enrichment analysis were conducted on two groups of patients with phenotypic diversity from the same family. These analyses identified significant differentially expressed genes and enriched pathways in these two groups. Altogether, these findings provide insight into the mechanism underlying the variable expressivity of VWS.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xing-Yue Dong
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jue Wu
- Department of Translational Medicine Laboratory, First Medical Center of People's Liberation Army General Hospital, Beijing 100039, P.R. China
| | - Jian-Jiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing 100080, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - You-Sheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
11
|
Chen Y, Li HY, Zeng F, Chen L, Zhou FY, Peng ZY, Yang H, Zhou HD, Wang YJ, Li L. LincRNA Plays a Role in the Effect of CYP46A1 Polymorphism in Alzheimer's Disease - Related Pathology. Front Aging Neurosci 2020; 11:381. [PMID: 32038226 PMCID: PMC6985081 DOI: 10.3389/fnagi.2019.00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 12/24/2022] Open
Abstract
Polymorphism of the cholesterol-24S-hydroxylase (CYP46A1) gene is thought to be a risk factor for Alzheimer’s disease (AD). A single nucleotide polymorphism (T/C) in intron 2, rs754203, has been confirmed to be implicated in AD. Rs754203 is located in the long intronic non-coding RNA (LincRNA) sequence, which has previously been shown to be involved in the pathology of many diseases. Thus, the present study aimed to investigate the role of LincRNA in the CYP46A1 gene expression and related AD pathology. SH-SY5Y cells with overexpressed TT or CC genotype CYP46A1 were used. Through RT-PCR, Western blot and ELISA assays, we found that LincRNA can affect the CYP46A1 gene expression and the production of 24-OHC and Aβ. Overexpression of LincRNA can significantly inhibit CYP46A1 expression and 24-OHC production, as well as increasing the Aβ expression level. Silencing of LincRNA confirmed the role that it plays in the regulation of CYP46A1, as well as the production of 24-OHC and Aβ. In addition, this effect was stronger in the A type LincRNA than in the G type LincRNA. Results from dual luciferase assays show that LincRNA inhibited the activity of the CYP46A1 gene promoter. This study indicates a possible novel role of LincRNA and provides a new way to look into the relationship between CYP46A1 polymorphism and AD pathology. This may identify a novel pathway through which to explore AD therapy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Hui-Yun Li
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Fan Zeng
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Le Chen
- Postgraduate School, Bengbu Medical College, Bengbu, China
| | - Fa-Ying Zhou
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Ze-Yan Peng
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Hai Yang
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| | - Ling Li
- Department of Neurology, Centre for Clinical Neuroscience, Daping Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Seelan RS, Greene RM, Pisano MM. MicroRNAs as Epigenetic Targets of Cigarette Smoke During Embryonic Development. Microrna 2020; 9:168-173. [PMID: 31556862 PMCID: PMC7365999 DOI: 10.2174/2211536608666190926114704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, fetal mortality and morbidity. The current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis, and that the environment can have a profound effect on shaping the epigenome. It has become increasingly recognized that genes encoding microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS can cause developmental anomalies may be through epigenetic mechanisms involving altered miRNA expression. While several studies have focused on genes affected by CS during embryonic/ fetal development, there is a paucity of knowledge on the involvement of miRNAs in this process. This brief review summarizes the current state of knowledge in this area.
Collapse
Affiliation(s)
- Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Robert M. Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Michele M. Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| |
Collapse
|
13
|
Shang H, Hao Y, Hu W, Hu X, Jin Q. CDH2 gene rs11564299 polymorphism is a risk factor for knee osteoarthritis in a Chinese population: a case-control study. J Orthop Surg Res 2019; 14:208. [PMID: 31288825 PMCID: PMC6617828 DOI: 10.1186/s13018-019-1256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Cadherin-2 (CDH2) gene polymorphisms were reported to be associated with the induction and development of knee osteoarthritis (OA). Methods This case–control study was designed to explore the association between CDH2 gene rs11564299 polymorphism and the risk of knee OA in Chinese subjects. The polymorphism was genotyped by polymerase chain reaction and Sanger sequencing. Results G allele or GG genotype of CDH2 gene rs11564299 polymorphism was related to increased risk for knee OA in the Chinese Han population. Additionally, subgroup analyses indicated that the female, smoker, drinker, and BMI ≥ 25 kg/m2 groups showed increased risk for knee OA. Additionally, this polymorphism was associated with CRP and Kellgren–Lawrence grade. Conclusion In summary, this current study reveals that CDH2 gene rs11564299 polymorphism is a risk factor for knee OA development in this Chinese population. The genotypes distribution differed significantly among OA patients and healthy controls and may be a useful tool in the evaluation of OA susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Houlai Shang
- Department of Orthopaedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Yuedong Hao
- Department of Orthopaedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Wenhao Hu
- Department of Orthopaedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xiaohui Hu
- Department of Orthopaedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qing Jin
- Department of Operation and Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
14
|
Han T, Wu N, Wang Y, Shen W, Zou J. miR‑16‑2‑3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. Int J Mol Med 2019; 43:1441-1451. [PMID: 30664182 PMCID: PMC6365086 DOI: 10.3892/ijmm.2019.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting the 3′ untranslated region (UTR) of target genes, and serve diverse roles in cell proliferation, differentiation and apoptosis. However, the association between miR-16-2-3p and 3-phosphoinositide-dependent protein kinase-1 (PDPK1) in nonsyndromic cleft lip (NSCL) remains unclear. In the present study, a luciferase activity assay indicated that miR-16-2-3p negatively regulated PDPK1 in maxillary primordium mesenchymal cells (MPMCs). In addition, it was confirmed that the expression levels of miR-16-2-3p was markedly increased in cleft lip tissues compared with those in adjacent normal lip tissues. A negative correlation between miR-16-2-3p and PDPK1 in cleft lip tissues was observed. Furthermore, miR-16-2-3p inhibited cell proliferation and migration, and induced apoptosis of MPMCs via repressing PDPK1. Finally, miR-16-2-3p exerted its suppressive role in MPMCs by inhibiting the PDPK1/protein kinase B signaling pathway. These results indicate that miR-16-2-3p may inhibit cell proliferation and migration, and promote apoptosis in MPMCs through repression of PDPK1 and may be a potential target for future clinical prevention and treatment of NSCL.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ni Wu
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Youjing Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|