1
|
Wang Y, Qiu L, Xu H, Luo S, Yang L, Huang N, Guo Y, Wu J. Inhibition of JNK transcription via the Nrf2/Keap1a pathway to resist microcystin-induced oxidative stress and apoptosis in freshwater mussels Cristaria plicata. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109982. [PMID: 39033794 DOI: 10.1016/j.cbpc.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
With global warming and increasing eutrophication of water bodies, a variety of algal toxins, including microcystin (MC), released into water by cyanobacterial blooms pose a serious threat to the survival of aquatic organisms. To investigate the mechanism of the Nrf2/Keap1a pathway on resisting MC-induced oxidative stress and apoptosis in Cristata plicata, we cloned the full-length cDNA of CpBcl-2. The cDNA full-length of CpBcl-2 was 760 bp, encoded a 177 amino acid peptide, and contained a highly conserved Bcl-2-like superfamily domain. MC stimulation increased the expression and activity levels of related antioxidant enzymes. After CpNrf2 knockdown, the transcription levels of NAD(P)H quinone redox Enzyme-1 (NQO1) and related antioxidant enzymes activity in the gills and kidney of C. plicata were significantly down-regulated upon MC stress, but that was significantly upregulated after knockdown of CpKeap1a. Additionally, Upon MC stress, the mRNA levels of CpBcl-2 were increased in the gills and kidney after knockdown of CpNrf2 at 24 h, and that of CpBcl-2 were decreased at 72 and 96 h in the CpKeap1a-siRNA+MC group. Moreover, MC stimulation significantly inhibited CpJNK expression in the gills and kidney, but which regulated the Nrf2/Keap1a pathway in C. plicata. However, the JNK inhibitor SP600125 promoted the expression of CpNrf2 and related enzymes with antioxidant response element (ARE-driven enzyme) in the gills and kidney. Then, we speculated that CpKeap1a was a negative regulator of CpNrf2, and C. plicata resisted MC-induced oxidative damage and apoptosis by inhibiting JNK transcription via the Nrf2/Keap1a pathway.
Collapse
Affiliation(s)
- Yanrui Wang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Linhan Qiu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Hui Xu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shanshan Luo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Lang Yang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Nana Huang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yuping Guo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jielian Wu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
Yao R, Qiu L, Zhu L, Chen X, Zhai J, Wang W, Qi P, Liao Z, Buttino I, Yan X, Guo B. The Functional Significance of McMafF_G_K in Molluscs: Implications for Nrf2-Mediated Oxidative Stress Response. Int J Mol Sci 2023; 24:16800. [PMID: 38069123 PMCID: PMC10706432 DOI: 10.3390/ijms242316800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.
Collapse
Affiliation(s)
- Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Jiaying Zhai
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro n.38, 57122 Livorno, Italy;
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| |
Collapse
|
3
|
Wu J, Lv R, Qiu L, Zhang S, Jiao H, Wang Y, Luo S, Fang H, Wen C. JNK regulates the Nrf2/NQO1-ARE pathway against Microcystins-Induced oxidative stress in freshwater mussel Cristaria plicata. Gene 2023; 883:147653. [PMID: 37479096 DOI: 10.1016/j.gene.2023.147653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
In response to stress, cells can utilize several processes, such as the activation of the Nrf2/Keap1 pathway as a critical regulator of oxidative stress to protect against oxidative damage. C-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, is involved in regulating the NF-E2-related nuclear factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway. NAD(P)H quinone redox enzyme-1 (NQO1), a downstream target gene of the Nrf2 pathway, plays a vital role in removing peroxide and providing resistance to oxidative injury. We found that microcystins (MCs) stimulated CpNrf2 to express and increase anti-oxidative enzyme activities in a previous experiment. In our current study, the full-length cDNAs of JNK and NQO1 from Cristaria plicata (designated CpJNK and CpNQO1) were cloned. The relative levels of CpJNK and CpNQO1 were high in hepatopancreas. Upon MCs induction, the relative level of CpNQO1 was increased, whereas that of CpJNK was decreased significantly. In contrast, CpNrf2 knockdown upregulated the expression of CpJNK mRNA and phosphorylation of CpJNK protein (Cpp-JNK), but inhibited CpNQO1 expression. Additionally, we found that JNK inhibitor SP600125 stimulated expression of CpNQO1 and CpNrf2 upon exposure to MCs, and we further confirmed that CpNrf2 protein combined with the ARE element in CpNQO1 gene promoter in vitro, and increased CpNQO1-ARE-luciferase activity in a CpNrf2-dependent manner. These findings indicated C. plicata effectively alleviated MC-induced oxidative injury through JNK participated in regulating the Nrf2/NQO1-ARE pathway.
Collapse
Affiliation(s)
- Jielian Wu
- Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Rong Lv
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Linhan Qiu
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shuangping Zhang
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - He Jiao
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yanrui Wang
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shanshan Luo
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Haihong Fang
- Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Chungen Wen
- College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Hu Z, Guo Y, Ying S, Tang Y, Niu J, Wang T, Huang R, Xie H, Wang W, Peng X. OsCBL1 modulates rice nitrogen use efficiency via negative regulation of OsNRT2.2 by OsCCA1. BMC PLANT BIOLOGY 2023; 23:502. [PMID: 37853334 PMCID: PMC10583366 DOI: 10.1186/s12870-023-04520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND For cereal crop breeding, it is meaningful to improve utilization efficiency (NUE) under low nitrogen (LN) levels while maintaining crop yield. OsCBL1-knockdown (OsCBL1-KD) plants exhibited increased nitrogen accumulation and NUE in the field of low N level. RESULTS OsCBL1-knockdown (OsCBL1-KD) in rice increased the expression of a nitrate transporter gene OsNRT2.2. In addition, the expression of OsNRT2.2, was suppressed by OsCCA1, a negative regulator, which could directly bind to the MYB-binding elements (EE) in the region of OsNRT2.2 promoter. The OsCCA1 expression was found to be down-regulated in OsCBL1-KD plants. At the low Nitrogen (N) level field, the OsCBL1-KD plants exhibited a substantial accumulation of content and higher NUE, and their actual biomass remained approximately as the same as that of the wild type. CONCLUSION These results indicated that down-regulation of OsCBL1 expression could upregulate the expression of OsNRT2.2 by suppressing the expression of OsCCA1and then increasing the NUE of OsCBL1-KD plants under low nitrogen availability.
Collapse
Affiliation(s)
- Zhao Hu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yutan Guo
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Suping Ying
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yunting Tang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiawei Niu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ting Wang
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Ruifeng Huang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development center, National Engineering Laboratory for Rice, Nanchang, China
| | - Wenya Wang
- Msc Applied Genomics, Imperial College London, London, UK
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Wu J, Liu W, Hou S, Wang Y, Fang H, Luo S, Yang L, Wen C. Identification of Nrf2/Keap1 pathway and its transcriptional regulation of antioxidant genes after exposure to microcystins in freshwater mussel Cristaria plicata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104629. [PMID: 36587710 DOI: 10.1016/j.dci.2022.104629] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MC) are one of the most abundant and widely distributed cyanotoxins in aquatic systems. MC inhibits the functions of protein phosphatase 1 and 2A (PP1/2A), which can seriously affect ecosystem integrity. The NF-E2-related nuclear factor 2 (Nrf2)/Kelch-like epichlorohydrin-related protein-1 (Keap1) signaling pathway protects against oxidative damage by activating phase II detoxification/antioxidant enzymes. Our previous study revealed that MC upregulates the expression and enhances the activities of the antioxidant enzymes by stimulating the CpNrf2 signaling pathway. In the current study, to further clarify the regulatory role of Keap1 in response to MC-induced oxidative stress in shellfish, we cloned the full-length cDNA of Keap1a and Keap1b from Cristaria plicata (designated CpKeap1a and CpKeap1b), which are 2952 and 3710 bp peptides, respectively. The amino acid sequence of CpKeap1a and CpKeap1b contained Tram-track and Bric-a-brac (BTB), Intervening region (IVR), and Double glycine repeat (DGR) domain. Additionally, CpKeap1a contained two cysteine residues analogous to Cys-273 and -288 in zebrafish, but CpKeap1b did not. Moreover, CpKeap1a and -1b formed a homodimer and heterodimer, respectively, and also formed a heterodimer with CpNrf2. In the hepatopancreas, the expression levels of CpKeap1a and -1b were the highest, but MC treatment down-regulated the expression of these proteins. Moreover, the transcription of antioxidant enzymes with antioxidant response element (ARE-driven enzymes), including CpMnSOD, CpCu/ZnSOD, CpTRX, CpPrx, CpSe-GPx, and Cpsigma-GST was upregulated by CpNrf2 in the hepatopancreas. Compared with the MC-induced group, CpKeap1a-siRNA1117 injection significantly increased the transcription of mRNAs for ARE-driven enzymes and Nrf2. CpKeap1a-siRNA1117 also enhanced the activities of antioxidation enzymes. These findings demonstrated that Keap1a negatively regulated the expression of Nrf2 protein and MC-induced oxidative stress response in C. plicata. Therefore, we speculated that CpKeap1a promoted CpNrf2 by recognizing and binding MC. These events then protected molluscs from MC-induced oxidative damage.
Collapse
Affiliation(s)
- Jielian Wu
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Wenxiu Liu
- Nanchang University, Nanchang, 330031, China
| | - Shumin Hou
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Yanrui Wang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Haihong Fang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Shanshan Luo
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Lang Yang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Chungen Wen
- Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Wu J, Hou S, Yang L, Wang Y, Wen C, Guo Y, Luo S, Fang H, Jiao H, Xu H, Zhang S. P62/SQSTM1 upregulates NQO1 transcription via Nrf2/Keap1a signaling pathway to resist microcystins-induced oxidative stress in freshwater mussel Cristaria plicata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106398. [PMID: 36669434 DOI: 10.1016/j.aquatox.2023.106398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) are the most frequent and widely distributed type of cyanotoxin in aquatic systems, and they cause an imbalance of the body's oxidative system. In a previous experiment, we demonstrated that the mollusk Cristaria plicata can protect against MC-induced oxidative damage through the nuclear factor erythroid 2-related factor 2(Nrf2)/Kelch-like epichlorohydrin-related protein-1 (Keap1) pathway. Here, we evaluated whether selective autophagy affects the Nrf2/Keap1a anti-oxidative stress pathway in C. plicata. Full-length cDNA sequences of p62/SQSTM1 from C. plicata (Cpp62) were divided into 2484 bp fragments. From N-terminal to C-terminal, the amino acid sequence of Cpp62 contained PB1 (Phox and Bem1p domain), ZNF (zinc finger domain) chain, LIR (LC3 interacting region) and UBA (ubiquitin-associated domain) domains, but not the KIR (Keap1 interacting region) domain. We confirmed that Cpp62 did not bind to CpKeap1a in vitro, and the relative level of Cpp62 was the highest in the hepatopancreas. Moreover, MCs significantly upregulated the mRNA and protein levels of Cpp62 in the hepatopancreas after CpKeap1a knockdown, whereas Nrf2 upregulated the transcription levels of Cpp62, suggesting that MCs increased Cpp62 expression via the Nrf2/Keap1a signaling pathway. Moreover, Cpp62 and CpNrf2 proteins have a strong affinity for the NQO1 promoter, but MCs inhibited the ability of CpNrf2 and Cpp62 to upregulate luciferase activity. The results show that Nrf2 and the p62 protein induced p62 expression by binding to ARE (antioxidant response element) sequences in the p62 promoter of C. plicata, thereby promoting p62 to resist MC-induced oxidative stress. Therefore, we speculate that MCs induce p62-dependent autophagy in C. plicata, resulting in the inhibition of Nrf2 transcription and Cpp62 promoter activity. These findings help to reveal the mechanism by which the p62-Nrf2/Keap1 pathway mitigates MC-induced oxidative damage in mussels.
Collapse
Affiliation(s)
- Jielian Wu
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China.
| | - Shumin Hou
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Lang Yang
- Nanchang University, Nanchang 330031, China
| | - Yanrui Wang
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Chungen Wen
- Nanchang University, Nanchang 330031, China.
| | - Yuping Guo
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Shanshan Luo
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Haihong Fang
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - He Jiao
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Hui Xu
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| | - Shuangping Zhang
- Science & Technology Normal University of Jiangxi, Nanchang 330013, China
| |
Collapse
|
7
|
Pal M, Purohit HJ, Qureshi A. Genomic insight for algicidal activity in Rhizobium strain AQ_MP. Arch Microbiol 2021; 203:5193-5203. [PMID: 34341843 DOI: 10.1007/s00203-021-02496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
Occurrence of Harmful Algal Blooms (HABs) creates a threat to aquatic ecosystem affecting the existing flora and fauna. Hence, the mitigation of HABs through an eco-friendly approach remains a challenge for environmentalists. The present study provides the genomic insights of Rhizobium strain AQ_MP, an environmental isolate that showed the capability of degrading Microcystis aeruginosa (Cyanobacteria) through lytic mechanisms. Genome sequence analysis of Rhizobium strain AQ_MP unraveled the algal lytic features and toxin degradative pathways in it. Functional genes of CAZymes such as glycosyltransferases (GT), glycoside hydrolases (GH), polysaccharide lyases (PL) which supports algal polysaccharide degradation (lysis) were present in Rhizobium strain AQ_MP. Genome analysis also clarified the presence of the glutathione metabolic pathway, which is the biological detoxification pathway responsible for toxin degradation. The conserved region mlrC, a microcystin toxin-degrading gene was also annotated in the genome. The study illustrated that Rhizobium strain AQ_MP harbored a wide range of mechanisms for the lysis of Microcystis aeruginosa cells and its toxin degradation. In future, this study finds promiscuity for employing Rhizobium strain AQ_MP species for bioremediation, based on its physiological and genomic analysis.
Collapse
Affiliation(s)
- Mili Pal
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Wu JL, Liu WX, Wen CG, Qian GM, Hu BQ, Jian SQ, Yang G, Dong J. Effect of microcystin on the expression of Nrf2 and its downstream antioxidant genes from Cristaria plicata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105526. [PMID: 32569999 DOI: 10.1016/j.aquatox.2020.105526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Microcystin (MC) is a cyclic heptapeptide toxin. Nuclear factor erythocyte 2-related factor 2 (Nrf2) can enhance cellular survival by mediating phase 2 detoxification and antioxidant genes. In this study, CpNrf2 cDNA sequences were cloned from freshwater bivalve Cristaria plicata. The full-length CpNrf2 cDNA sequence was 4259 bp, and its homology was the highest with Mizuhopecten yessoensis, reaching 46%. CpNrf2 transcription levels were examined in all tested tissues, and the highest level was in hepatopancreas from C. plicata. The recombinant protein pET32-CpNrf2 was purified with the content of 1.375 mg/mL. The expression levels of CpNrf2 mRNA were raised in hepatopancreas after MC stimulation. After CpNrf2 knockdown, CpNrf2 mRNA levels were significantly down-regulated after 24 h. Compared with control group, the expression levels of ARE-driven enzymes (CpMnSOD, CpCuZnSOD, CpTRX, CpPrx, CpSe-GPx and Cpsigma-GST) were significantly increased, and those enzyme activities were also significantly up-regulated in MC-stimulated group. However, in CpNrf2-iRNA group, they were significantly down-regulated. The results revealed that Nrf2/ARE pathway is very crucial to protect molluscs from MC.
Collapse
Affiliation(s)
- Jie-Lian Wu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China; Science & Technology, Normal University of Jiangxi, Nanchang 330013, China
| | - Wen-Xiu Liu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chun-Gen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Guo-Ming Qian
- Rice Seed Stock of Dengjiabu Jiangxi, Yintan 335200, China
| | - Bao-Qing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shao-Qing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jie Dong
- Science & Technology, Normal University of Jiangxi, Nanchang 330013, China
| |
Collapse
|