1
|
Wang H, Wen Z, Amenyogbe E, Jin J, Lu Y, Wang Z, Huang J. Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2024; 14:3261. [PMID: 39595312 PMCID: PMC11591422 DOI: 10.3390/ani14223261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The Nao-zhou stock large yellow croaker (Larimichthys crocea) is a unique economic seawater fish species in China and exhibits significant dimorphism in both male and female phenotypes. Cultivating all-female seedlings can significantly improve breeding efficiency. To accelerate the cultivation process of all female seedlings of this species, it is necessary to deeply understand the regulatory mechanisms of sexual differentiation and gonadal development. This study used Illumina high-throughput sequencing to sequence the transcriptome of the testes and ovaries of Nao-zhou stock large yellow croaker to identify genes and molecular functions related to sex determination. A total of 10,536 differentially expressed genes were identified between males and females, including 5682 upregulated and 4854 downregulated genes. Functional annotation screened out 70 important candidate genes related to sex, including 34 genes highly expressed in the testis (including dmrt1, foxm1, and amh) and 36 genes highly expressed in the ovary (including gdf9, hsd3b1, and sox19b). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that differentially expressed genes were significantly enriched in nine signaling pathways related to sex determination and gonadal development, including steroid hormone biosynthesis, MAPK signaling pathway, and the TGF-beta signaling pathway. By screening sex-related differentially expressed genes and mapping protein-protein interaction networks, hub genes such as dmrt1, amh, and cyp19a1a were found to be highly connected. The expression levels of 15 sex-related genes, including amh, dmrt1, dmrt2a, foxl1, and zp3b, were determined by qRT-PCR and RNA sequencing. This study screened for differentially expressed genes related to sex determination and differentiation of Nao-zhou stock large yellow croaker and revealed the signaling pathways involved in gonad development of male and female individuals. The results provide important data for future research on sex determination and differentiation mechanisms, thereby providing a scientific basis for the cultivation of all-female seedlings.
Collapse
Affiliation(s)
- Haojie Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zirui Wen
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana;
| | - Jinghui Jin
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Yi Lu
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zhongliang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Jiansheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
2
|
Bhat IA, Dubiel MM, Rodriguez E, Jónsson ZO. Insights into Early Ontogenesis of Salmo salar: RNA Extraction, Housekeeping Gene Validation and Transcriptional Expression of Important Primordial Germ Cell and Sex-Determination Genes. Animals (Basel) 2023; 13:ani13061094. [PMID: 36978635 PMCID: PMC10044239 DOI: 10.3390/ani13061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The challenge in extracting high-quality RNA impedes the investigation of the transcriptome of developing salmonid embryos. Furthermore, the mRNA expression pattern of important PGC and SD genes during the initial embryonic development of Salmo salar is yet to be studied. So, in the present study, we aimed to isolate high-quality RNA from eggs and developing embryos to check vasa, dnd1, nanos3a, sdf1, gsdf, amh, cyp19a, dmrt1 and foxl2 expression by qPCR. Additionally, four HKGs (GAPDH, UB2L3, eEf1a and β-actin) were validated to select the best internal control for qPCR. High-quality RNA was extracted, which was confirmed by spectrophotometer, agarose gel electrophoresis and Agilent TapeStation analysis. UB2L3 was chosen as a reference gene because it exhibited lower intra- and inter-sample variation. vasa transcripts were expressed in all the developmental stages, while dnd1 was expressed only up to 40 d°C. Nanos3a was expressed in later stages and remained at its peak for a shorter period, while sdf1 showed an irregular pattern of mRNA expression. The mRNA expression levels of SD genes were observed to be upregulated during the later stages of development, prior to hatching. This study presents a straightforward methodology for isolating high-quality RNA from salmon eggs, and the resulting transcript profiles of significant PGC and SD genes in S. salar could aid in improving our comprehension of reproductive development in this commercially important species.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Milena Malgorzata Dubiel
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
3
|
Cloning and Expression Profiling of the Gene vasa during First Annual Gonadal Development of Cobia (Rachycentron canadum). FISHES 2022. [DOI: 10.3390/fishes7020060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vasa gene is essential for germ cell development and gametogenesis both in vertebrates and in invertebrates. In the present study, vasa (Rcvasa) cDNA was cloned from cobia (Rachycentron canadum) using the RACE amplification method. We found that the full-length cDNA sequence of Rcvasa comprises 2571 bp, containing a 5′-UTR of 145 bp, a 3′-UTR of 341 bp, and an open reading frame (ORF) of 2085 bp, encoding a protein of 694 aa. The deduced amino acid sequence contains 8 conserved motifs of the DEAD-box protein family, 7 RGG repeats, and 10 RG repeats in the N-terminal region. Comparisons of the deduced amino acid sequence with those of other teleosts revealed the highest percentage identity (86.0%) with Seriola quinqueradiata. By using semiquantitative RT-PCR, Rcvasa appeared to be specifically expressed in the testis and ovary, among 13 tissues analyzed. In addition, annual changes in Rcvasa expression levels were examined in the gonads by quantitative real-time PCR (qRT-PCR). The expression of Rcvasa in the testis first increased significantly at 120 dph (stage II–III), then stabilized as the testis developed from 185 dph (stage III) to 360 dph (stage V). During the development of the ovary (stage I to II), the expression of Rcvasa first increased and reached the highest level at 210 dph (stage II), then decreased. Furthermore, the results of chromogenic in situ hybridization (CISH) revealed that Rcvasa mRNA was mainly expressed in germ cells and barely detected in somatic cells. In the testis, Rcvasa mRNA signal was concentrated in the periphery of spermatogonia, primary spermatocytes, and secondary spermatocytes and was significantly weaker in spermatids and spermatozoa. In the ovary, Rcvasa mRNA signal was uniformly distributed in the perinuclear cytoplasm and was intense in early primary oocytes (stage I and II). These findings could provide a reference for understanding the regulatory mechanisms of vasa expression during the development of germ cells in cobia.
Collapse
|
4
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Azizi H, NiaziTabar A, Mohammadi A, Skutella T. Characterization of DDX4 Gene Expression in Human Cases with Non-Obstructive Azoospermia and in Sterile and Fertile Mice. J Reprod Infertil 2021; 22:85-91. [PMID: 34041004 PMCID: PMC8143011 DOI: 10.18502/jri.v22i2.5793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background In mammals, spermatogenesis is the main process for male fertility that is initiated by spermatogonial stem cells (SSCs) proliferation. SSCs are unipotent progenitor cells accountable for transferring the genetic information to the following generation by differentiating to haploid cells during spermato-and spermiogenesis. DEAD-box helicase 4 (DDX4) is a specific germ cell marker and its expression pattern is localized to, spermatocytes, and spermatids. The expression in the SSCs on the basement membrane of the seminiferous tubules is low. Methods Immunohistochemistry (IHC) and Fluidigm reverse transcriptase-polymerase chain reaction (RT-PCR) were used to analyze the expression of DDX4 in testis tissue of fertile and sterile mice and human cases with non-obstructive azoospermia. Results Our immunohistochemical findings of fertile and busulfan-treated mice showed expression of DDX4 in the basal and luminal compartment of seminiferous tubules of fertile mice whereas no expression was detected in busulfan-treated mice. The immunohistochemical analysis of two human cases with different levels of non-obstructive azoospermia revealed more luminal DDX4 positive cells. Conclusion Our findings indicate that DDX4 might be a valuable germ cell marker for analyzing the pathology of germ cell tumors and infertility as global urological problems.
Collapse
Affiliation(s)
- Hossein Azizi
- Department of Nanobiotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Amirreza NiaziTabar
- Department of Nanobiotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Atiyeh Mohammadi
- Department of Nanobiotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Wang T, Wei X, Sun Y, Hu Y, Li J, Zhang X, Yin S, Shi Y, Zhu Y. Copper nanoparticles induce the formation of fatty liver in Takifugu fasciatus triggered by the PERK-EIF2α- SREBP-1c pathway. NANOIMPACT 2021; 21:100280. [PMID: 35559772 DOI: 10.1016/j.impact.2020.100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 06/15/2023]
Abstract
Copper nanoparticles (CuNPs), a new pollutant in water environments, were widely used in various industrial and commercial applications. This study indicated that the presence of CuNPs exposure under environmental related concentration is an inducing factor that contributes to the fatty liver formation in Takifugu fasciatus. Furthermore, we explored the fatty liver formation mechanism. The results shown, (1) the cloned genes related to endoplasmic reticulum stress (ERS) (GRP78, IRE-1α, PERK, and ATF-6α) were highly expressed in the liver of T. fasciatus. (2) after 30-days exposure, CuNPs accumulated in the endoplasmic reticulum of liver and induced the appearance of ERS, then activated unfolded protein response (UPR) signaling pathway. Furthermore, the SREBP-1c pathway that plays a key role in lipid synthesis was activated. (3) by using 4-PBA and GSK inhibitors to respectively stimulate ERS and PKR-like ER kinase (PERK) through in vitro experiments, we confirmed that CuNPs induced the fatty liver formation in T. fasciatus triggered by the PERK-EIF2α pathway by activating the SREBP-1c pathway to promote fatty liver formation. This study provides a new perspective for identifying the pathogens of fatty liver formation, and adds to the knowledge of the ecological safety data service of CuNPs in water.
Collapse
Affiliation(s)
- Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xiaozhen Wei
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Yiru Sun
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Yadong Hu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jie Li
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xinyu Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Yonghai Shi
- Shanghai Fisheries Research Institute, Shanghai 200433, China
| | - Yongxiang Zhu
- Jiangsu Zhongyang Group Company Limited, Haian, Jiangsu 226600, China
| |
Collapse
|
7
|
Identification and characterization of germ cell genes vasa and dazl in a protogynous hermaphrodite fish, orange-spotted grouper (Epinephelus coioides). Gene Expr Patterns 2020; 35:119095. [DOI: 10.1016/j.gep.2020.119095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
|
8
|
Wang T, Zhu W, Zhang H, Wen X, Yin S, Jia Y. Integrated analysis of proteomics and metabolomics reveals the potential sex determination mechanism in Odontobutis potamophila. J Proteomics 2019; 208:103482. [PMID: 31401171 DOI: 10.1016/j.jprot.2019.103482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Odontobutis potamophila is a valuable species for aquaculture in China, which shows asexually dimorphic growth pattern. In this study, the integrated proteomics and metabolomics were used to analyze the sex determination mechanism. A total of 2781 significantly different regulated proteins were identified by proteomics and 2693 significantly different expressed metabolites were identified by metabolomics. Among them, 2560 proteins and 1701 metabolites were significantly up-regulated in testes, whereas 221 proteins and 992 metabolites were significantly up-regulated in ovaries. Venn diagram analysis showed 513 proteins were differentially regulated at both protein and metabolite levels. Correlation analysis of differentially-regulated proteins and metabolites were identified by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The results showed lipid metabolism plays an important role in sex determination. The metabolites decanoyl-CoA, leukotriene, 3-dehydrosphinganine, and arachidonate were the biomarkers in testes, whereas estrone and taurocholate were the biomarkers in ovaries. Interaction networks of the significant differentially co-regulated proteins and metabolites in the process of lipid metabolism showed arachidonic acid metabolism and steroid hormone biosynthesis were the most important pathways in sex determination. The findings of this study provide valuable information for selective breeding of O. potamophila. SIGNIFICANCE OF THE STUDY: The male O. potamophila grows substantially larger and at a quicker rate than the female. Thus, males have greater economic value than females. However, limited research was done to analyze the sex determination mechanism of O. potamophila, which seriously hindered the development of whole-male O. potamophila breeding. In this study, four key proteins (Ctnnb1, Piwil1, Hsd17b1, and Dnali1), six most important biomarkers (decanoyl-CoA, leukotriene, 3-dehydrosphinganine, arachidonate, estrone, and taurocholate) and two key pathways (arachidonic acid metabolism and steroid hormone biosynthesis) in sex determination of O. potamophila were found by integrated application of iTRAQ and LC-MS techniques. The results give valuable information for molecular breeding of O. potamophila in aquaculture.
Collapse
Affiliation(s)
- Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wenxu Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xin Wen
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|