1
|
Zhu S, Xi Y, Xu J, Hu L, Luo C, Yao K, Chen X. The 18th amino acid glycine plays an essential role in maintaining the structural stabilities of γS-crystallin linking with congenital cataract. Int J Biol Macromol 2023; 251:126339. [PMID: 37586630 DOI: 10.1016/j.ijbiomac.2023.126339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
γS-crystallin is particularly rich in the embryonic nuclear region and is crucial to the maintenance of lens transparency and optical properties. Gene mutations in crystallin are the main factors leading to congenital hereditary cataracts, which are a major cause of visual impairment in children. Some mutations located in the 18th amino acid glycine of γS-crystallin were reported to be linking with congenital cataracts. However, the pathogenic mechanism has not been elucidated. Interestingly, we previously identified a novel variant of γS-crystallin (c.53G > A; p. G18D) with progressive cortical and sutural congenital cataracts in one Chinese family. In this study, we purified the γS-crystallin wildtype and mutant proteins to investigate the effects of the G18D mutation on the structural stability of γS-crystallin. The results showed that there were tertiary structural differences between the wild-type γS-crystallin and the G18D variant. The mutation significantly impaired the stability of γS-crystallin under environmental stress and promoted aggregation. Furthermore, molecular dynamics (MD) simulations showed that the mutation altered H-bonding and surface electrostatic potential. Significantly decreased stability along with an increased tendency to aggregate under environmental stress may be the major pathogenic factors for cataracts induced by the G18D mutation.
Collapse
Affiliation(s)
- Sha Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Yibo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjie Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Lidan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China.
| | - Xiangjun Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
2
|
Novel cataract-causing variant c.177dupC in c-MAF regulates the expression of crystallin genes for cell apoptosis via a mitochondria-dependent pathway. Mol Genet Genomics 2023; 298:495-506. [PMID: 36719481 DOI: 10.1007/s00438-022-01982-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/15/2022] [Indexed: 02/01/2023]
Abstract
Congenital cataract (CC) is regarded as the most common hereditary ophthalmic disease in children. Mutations in CC-associated genes play important roles in CC formation, which provides the basis for molecular diagnosis and therapy. Among these CC-associated genes, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (c-MAF) is considered an important transcription factor for eye and lens development. In this study, we recruited a three-generation Chinese Han family with CC. Gene sequencing revealed a novel duplication mutation in c-MAF (NM_005360.5: c.177dup) that caused frameshifting at residue 60 (p. M60fs) of c-MAF. Additionally, in the patient blood samples, the expression levels of related crystallin and noncrystallin genes confirmed that this novel duplication variant impaired the transactivation of c-MAF. Further functional analyses suggested that the c-MAF mutant induces the transcriptional inhibition of CRYAA and CRYGA and subsequently influences ME and G6PD expression levels, ultimately resulting in ROS generation and further leading to cell apoptosis via mitochondria-dependent pathways. In conclusion, we report a novel c-MAF heterozygous mutation that plays a vital role in CC formation in a Chinese family, broadening the genetic spectrum of CC.
Collapse
|
3
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
4
|
Wang KJ, Liao XY, Lin K, Xi YB, Wang S, Wan XH, Yan YB. A novel F30S mutation in γS-crystallin causes autosomal dominant congenital nuclear cataract by increasing susceptibility to stresses. Int J Biol Macromol 2021; 172:475-482. [PMID: 33454329 DOI: 10.1016/j.ijbiomac.2021.01.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023]
Abstract
Despite of increasingly accumulated genetic variations of autosomal dominant congenital cataracts (ADCC), the causative genes of many ADCC patients remains unknown. In this research, we identified a novel F30S mutation in γS-crystallin from a three-generation Chinese family with ADCC. The patients possessing the F30S mutation exhibited nuclear cataract phenotype. The potential molecular mechanism underlying ADCC by the F30S mutation was investigated by comparing the structural features, stability and aggregatory potency of the mutated protein with the wild type protein. Spectroscopic experiments indicated that the F30S mutation did not affect γS-crystallin secondary structure compositions, but modified the microenvironments around aromatic side-chains. Thermal and chemical denaturation studies indicated that the mutation destabilized the protein and increased its aggregatory potency. The mutation altered the two-state unfolding of γS-crystallin to a three-state unfolding with the accumulation of an unfolding intermediate. The almost identical values in the changes of Gibbs free energies for transitions from the native state to intermediate and from the intermediate to unfolded state suggested that the mutation probably disrupted the cooperativity between the two domains during unfolding. Our results expand the genetic variation map of ADCC and provide novel insights into the molecular mechanism underlying ADCC caused by mutations in β/γ-crystallins.
Collapse
Affiliation(s)
- Kai-Jie Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kunxia Lin
- Ophthalmology Department, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yi-Bo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sha Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Ji Y, Zhao X, Zhang J, Zhang D, Tian C, Zhang L, Zhao Y, Zhao J. A novel missense mutation of CRYBB1 causes congenital cataract in a Chinese family. Eur J Ophthalmol 2020; 31:1064-1069. [PMID: 32223445 DOI: 10.1177/1120672120914497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE OF THE STUDY To identify the pathogenic gene and mutation site of a Chinese family with congenital cataract. METHODS Eight family members and 100 controls were employed, and targeted exome sequencing was used to identify the genetically pathogenic factor of the proband. RESULTS Targeted next-generation sequencing identified a novel missense mutation c.209A>C (p.Q70P) of CRYBB1 gene in the family. Sanger sequencing results showed that this heterozygous mutation was a causative mutation, which was not found in unaffected family members and healthy controls. Bioinformatics predicts that the effect of this mutation on protein function is probably harmful. CONCLUSION We demonstrate that c.209A>C of CRYBB1 gene is a pathogenic mutation in the family of congenital nuclear cataract in this study. This is the first report that this mutation leads to congenital nuclear cataract, which broadens the mutation spectrum of CRYBB1 gene in congenital nuclear cataract.
Collapse
Affiliation(s)
- Yanan Ji
- Medical College, Qingdao University, Qingdao, China
| | - Xiangyu Zhao
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Department of Ophthalmology, Linyi People's Hospital, Linyi, China
| | - Dan Zhang
- Medical College, Qingdao University, Qingdao, China
| | - Chunliu Tian
- Medical College, Qingdao University, Qingdao, China
| | - Linlin Zhang
- Medical College, Qingdao University, Qingdao, China
| | | | - Jun Zhao
- Department of Ophthalmology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
6
|
Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, Beaty KA, Dehan E, Parikh B. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 2019; 138:109-124. [PMID: 30671672 PMCID: PMC6373233 DOI: 10.1007/s00439-019-01970-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
In the field of cancer genomics, the broad availability of genetic information offered by next-generation sequencing technologies and rapid growth in biomedical publication has led to the advent of the big-data era. Integration of artificial intelligence (AI) approaches such as machine learning, deep learning, and natural language processing (NLP) to tackle the challenges of scalability and high dimensionality of data and to transform big data into clinically actionable knowledge is expanding and becoming the foundation of precision medicine. In this paper, we review the current status and future directions of AI application in cancer genomics within the context of workflows to integrate genomic analysis for precision cancer care. The existing solutions of AI and their limitations in cancer genetic testing and diagnostics such as variant calling and interpretation are critically analyzed. Publicly available tools or algorithms for key NLP technologies in the literature mining for evidence-based clinical recommendations are reviewed and compared. In addition, the present paper highlights the challenges to AI adoption in digital healthcare with regard to data requirements, algorithmic transparency, reproducibility, and real-world assessment, and discusses the importance of preparing patients and physicians for modern digitized healthcare. We believe that AI will remain the main driver to healthcare transformation toward precision medicine, yet the unprecedented challenges posed should be addressed to ensure safety and beneficial impact to healthcare.
Collapse
Affiliation(s)
- Jia Xu
- IBM Watson Health, Cambridge, MA, USA.
| | | | - Shang Xue
- IBM Watson Health, Cambridge, MA, USA
| | | | | | - Fang Wang
- IBM Watson Health, Cambridge, MA, USA
| | | | | | | |
Collapse
|
7
|
Bari KJ, Sharma S, Chary KVR. Structural and functional characterization of a missense mutant of human γS-crystallin associated with dominant infantile cataracts. Biochem Biophys Res Commun 2018; 506:862-867. [PMID: 30391002 DOI: 10.1016/j.bbrc.2018.10.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/19/2023]
Abstract
Infantile cataracts constitute one of the most important causes of childhood blindness worldwide. Human γS-crystallin is the most abundant protein in the eye lens cortex. A missense mutant of human γS-crystallin, Y67N (abbreviated hereafter as γS-Y67N) is recently reported to be associated with dominant infantile cataracts. To understand the structural basis for γS-Y67N to cause lens opacification, we constructed, expressed and purified γS-Y67N and its wild-type (abbreviated hereafter as γS-WT) and studied the structural and functional differences between them in solution using circular dichroism (CD), differential scanning calorimetry (DSC), fluorescence spectroscopy and extrinsic spectral probes. Extensive equilibrium characterization indicate that replacement of the highly conserved Tyr at 67th position by Asn distorts the conserved Tyr corner at the second Greek key motif in the N-terminal domain (NTD) and leads to substantial loss of structural stability. Our intrinsic fluorescence quenching results reveal differential in-vitro refolding kinetics identifying partially folded kinetic intermediates for both proteins. Extrinsic fluorescence studies further reveal loosening up of the compact structure of γS-crystallin upon mutation associated with enhanced aggregation. As Ca2+ homeostasis is a crucial regulator of lens transparency, we further investigated the Ca2+-binding properties of γS-WT and γS-Y67N by isothermal titration calorimetry (ITC) to identify lens Ca2+ distribution in health and in disease. Overall, our results highlight the vital role of conserved Tyr corners in stabilizing Greek key motifs and provide useful structural and functional insights into the mechanism of cataract formation in humans.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India
| | - Shrikant Sharma
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India
| | - Kandala V R Chary
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India; Indian Institute of Science Education and Research, Berhampur, Odisha, 760010, India.
| |
Collapse
|