1
|
Sugiura K, Fujita H, Komine M, Yamanaka K, Akiyama M. The role of interleukin-36 in health and disease states. J Eur Acad Dermatol Venereol 2024; 38:1910-1925. [PMID: 38779986 DOI: 10.1111/jdv.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
The interleukin (IL)-1 superfamily upregulates immune responses and maintains homeostasis between the innate and adaptive immune systems. Within the IL-1 superfamily, IL-36 plays a pivotal role in both innate and adaptive immune responses. Of the four IL-36 isoforms, three have agonist activity (IL-36α, IL-36β, IL-36γ) and the fourth has antagonist activity (IL-36 receptor antagonist [IL-36Ra]). All IL-36 isoforms bind to the IL-36 receptor (IL-36R). Binding of IL-36α/β/γ to the IL-36R recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates downstream signalling pathways mediated by nuclear transcription factor kappa B and mitogen-activated protein kinase signalling pathways. Antagonist binding of IL-36Ra to IL-36R inhibits recruitment of IL-1RAcP, blocking downstream signalling pathways. Changes in the balance within the IL-36 cytokine family can lead to uncontrolled inflammatory responses throughout the body. As such, IL-36 has been implicated in numerous inflammatory diseases, notably a type of pustular psoriasis called generalized pustular psoriasis (GPP), a chronic, rare, potentially life-threatening, multisystemic skin disease characterised by recurrent fever and extensive sterile pustules. In GPP, IL-36 is central to disease pathogenesis, and the prevention of IL-36-mediated signalling can improve clinical outcomes. In this review, we summarize the literature describing the biological functions of the IL-36 pathway. We also consider the evidence for uncontrolled activation of the IL-36 pathway in a wide range of skin (e.g., plaque psoriasis, pustular psoriasis, hidradenitis suppurativa, acne, Netherton syndrome, atopic dermatitis and pyoderma gangrenosum), lung (e.g., idiopathic pulmonary fibrosis), gut (e.g., intestinal fibrosis, inflammatory bowel disease and Hirschsprung's disease), kidney (e.g., renal tubulointerstitial lesions) and infectious diseases caused by a variety of pathogens (e.g., COVID-19; Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pneumoniae infections), as well as in cancer. We also consider how targeting the IL-36 signalling pathway could be used in treating inflammatory disease states.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Fujita
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Yang S, Yang H, Huang Y, Chen G, Shen C, Zheng S. Serum Metabolomic Signatures of Hirschsprung's Disease Based on GC-MS and LC-MS. J Proteome Res 2023. [PMID: 37235583 DOI: 10.1021/acs.jproteome.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hirschsprung's disease (HSCR) is a congenital digestive tract malformation characterized by the absence of intramural ganglion cells in the myenteric and submucosal plexuses along variable lengths of the gastrointestinal tract. Although the improvement of surgical methods has allowed great progress in the treatment of HSCR, its incidence and postoperative prognosis are still not ideal. The pathogenesis of HSCR remains unclear to date. In this study, metabolomic profiling of HSCR serum samples was performed by an integrated analysis of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) as well as multivariate statistical analyses. Based on the random forest algorithm and receiver operator characteristic analysis, 21 biomarkers related to HSCR were optimized. Several amino acid metabolism pathways were identified as important disordered pathways of HSCR, among which tryptophan metabolism was crucial. To our knowledge, this is the first serum metabolomics study focusing on HSCR, and it provides a new perspective for explaining the mechanism of HSCR.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hong Yang
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yanlei Huang
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Gong Chen
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Chun Shen
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Shan Zheng
- Department of Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
3
|
Li D, Huang Q, Huang L, Wen J, Luo J, Li Q, Peng Y, Zhang Y. Baiting out a full length sequence from unmapped RNA-seq data. BMC Genomics 2021; 22:857. [PMID: 34837950 PMCID: PMC8626966 DOI: 10.1186/s12864-021-08146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a powerful tool, RNA-Seq has been widely used in various studies. Usually, unmapped RNA-seq reads have been considered as useless and been trashed or ignored. RESULTS We develop a strategy to mining the full length sequence by unmapped reads combining with specific reverse transcription primers design and high throughput sequencing. In this study, we salvage 36 unmapped reads from standard RNA-Seq data and randomly select one 149 bp read as a model. Specific reverse transcription primers are designed to amplify its both ends, followed by next generation sequencing. Then we design a statistical model based on power law distribution to estimate its integrality and significance. Further, we validate it by Sanger sequencing. The result shows that the full length is 1556 bp, with insertion mutations in microsatellite structure. CONCLUSION We believe this method would be a useful strategy to extract the sequences information from the unmapped RNA-seq data. Further, it is an alternative way to get the full length sequence of unknown cDNA.
Collapse
Affiliation(s)
- Dongwei Li
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642 China
| | - Qitong Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- Animal Breeding and Genomic, Wageningen University & Research, Wageningen, 6708PB, Netherlands
| | - Lei Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642 China
| | - Jing Luo
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Qing Li
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yanling Peng
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yubo Zhang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| |
Collapse
|
4
|
Tang W, Chen M, Guo X, Zhou K, Wen Z, Liu F, Liu X, Mao X, He X, Hu W, Sun X, Tang J, Li H, White RA, Lv W, Wang P, Hang B, Sun R, Wang X, Xia Y. Multiple 'omics'-analysis reveals the role of prostaglandin E2 in Hirschsprung's disease. Free Radic Biol Med 2021; 164:390-398. [PMID: 33465467 DOI: 10.1016/j.freeradbiomed.2020.12.456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
The etiology and pathogenesis of Hirschsprung's disease (HSCR) remain largely unknown. We examined colon tissues from three independent populations with a combined analysis of metabolomics, transcriptomics and proteomics to understand HSCR pathogenesis, according to which mouse model was used to examine prostaglandin E2 (PGE2) induced clinical presentation of HSCR. SH-SY5Y and SK-N-BE(2) cell lines were studied for PGE2 inhibited cell migration through EP2. Our integrated multiple 'omics'-analysis suggests that the levels of PGE2, the expression of the gene encoding PGE2 receptor (EP2), and PGE2 synthesis enzyme genes (PTGS1 and PTGES) increased in HSCR colon tissues, together with a decreased synthesis of PGE2-related byproducts. In vivo, the pregnant mice treated with PGE2 gave birth to offspring with the decrease of ganglion cells in their colon and gut function. In in vitro study, when EP2 was blocked, the PGE2-inhibited cell migration was recovered. Our study identified a novel pathway highlighting the link between expression of PTGS1 and PTGES, levels of PGE2, expression of PTGER2, and neural crest cell migration in HSCR, providing a novel strategy for future diagnosis and prevention of HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zechao Wen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Fengli Liu
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, 221006, China
| | - Xiang Liu
- Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Xiaohua Mao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaowei He
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Junwei Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Richard Allen White
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Wei Lv
- School of Business, Nanjing University, Nanjing, 210093, China
| | - Pin Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA; Department of Gastroenterology, The Drum Tower Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Zhang H, Zhao JL, Zheng Y, Xie XL, Huang LH, Li L, Zhu Y, Lu LF, Hu TQ, Zhong W, He QM. Correlation analysis of IL-11 polymorphisms and Hirschsprung disease subtype susceptibility in Southern Chinese Children. BMC Med Genomics 2021; 14:21. [PMID: 33468134 PMCID: PMC7814452 DOI: 10.1186/s12920-020-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a hereditary defect, which is characterized by the absence of enteric ganglia and is frequently concurrent with Hirschsprung-associated enterocolitis (HAEC). However, the pathogenesis for HSCR is complicated and remains unclear. Recent studies have shown that pro-inflammatory cytokines such as interleukin-11 (IL-11) are involved in the enteric nervous system's progress. It was found that IL-11 SNPs (rs8104023 and rs4252546) are associated with HSCR in the Korean population waiting for replication in an independent cohort. This study evaluated the relationship between IL-11 and the susceptibility of patients to HSCR by performing subphenotype interaction examination, HAEC pre-/post-surgical patient-only association analysis, and independence testing. METHODS In this study, a cohort consisting of children from Southern China, comprising 1470 cases and 1473 controls, was chosen to examine the relationship between two polymorphisms (rs8104023 and rs4252546 in IL-11) and susceptibility to HSCR by replication research, subphenotype association analysis, and independence testing. RESULTS The results showed that IL-11 gene polymorphisms (rs8104023 and rs4252546) are not associated with the risk of HSCR in the Chinese population. The results of both short-segment and long-segment (S-HSCR and L-HSCR) surgery (3.34 ≤ OR ≤ 4.05, 0.02 ≤ P ≤ 0.04) showed that single nucleotide polymorphisms (SNP) rs8104023 is associated with susceptibility to HAEC. CONCLUSIONS This study explored the relationship between genetic polymorphisms and susceptibility to HAEC in HSCR subtypes for the first time. These findings should be replicated in a larger and multicentre study.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Jing-Lu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Yi Zheng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Xiao-Li Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Li-Hua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Le Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Li-Feng Lu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Tu-Qun Hu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| | - Qiu-Ming He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623 Guangdong China
| |
Collapse
|
6
|
Liao C, Hu S, Zheng Z, Tong H. Contribution of interaction between genetic variants of interleukin-11 and Helicobacter pylori infection to the susceptibility of gastric cancer. Onco Targets Ther 2019; 12:7459-7466. [PMID: 31686851 PMCID: PMC6751226 DOI: 10.2147/ott.s214238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
Background Gastric cancer (GC) ranks the second leading cause of cancer-related mortality worldwide. We aimed to clarify the relevance of genetic variants of IL-11, a hub of various carcinogenic pathways, as well as their interactions with Helicobacter pylori (H. pylori) infection in the development of GC. Methods A case-control study with 880 GC cases and 900 healthy controls was conducted in a Chinese population. Six tagSNPs were detected by Taqman Allelic Discrimination assay, while H. pylori status was detected by Typing Detection Kit for Antibody to H. pylori and serum IL-11 level was measured using ELISA method. Results We found that rs1126760 (C vs T: OR=1.39, 95% CIs=1.13-1.70, P=0.002) and rs1126757 (C vs T: OR=0.82, 95% CIs=0.72-0.93, P=0.002) were significantly associated with susceptibility of GC. Even adjusted for Bonferroni correction, the results were still significant (P=0.002×6=0.012). IL-11 rs1126760 was significantly associated with higher serum and expression level of IL-11, while rs1126757 was significantly associated with lower serum IL-11 level (P<0.001). Significant interaction with H. pylori infection was identified for rs1126760 (P for interaction =0.005). Higher expression of the IL-11 gene was significant with development and poor prognosis of GC. Conclusion Our study provides strong evidence that genetic variants of the IL-11 gene may interact with H. pylori infection and contribute to the development of GC. Further studies with larger sample size and functional experiments are needed to validate our findings.
Collapse
Affiliation(s)
- Chuanwen Liao
- Department of Gastrointestinal Surgery, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Shuqin Hu
- Medical Department, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Zihan Zheng
- Department of Gastrointestinal Surgery, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Huazhang Tong
- Department of Radiotherapy, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
7
|
Abstract
Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.
Collapse
Affiliation(s)
- Paul M Nguyen
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Suad M Abdirahman
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Tracy L Putoczki
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| |
Collapse
|