1
|
Mo N, Shao S, Cui Z, Bao C. Roles of eyestalk in salinity acclimatization of mud crab (Scylla paramamosain) by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101276. [PMID: 38935995 DOI: 10.1016/j.cbd.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
Salinity acclimatization refers to the physiological and behavioral adjustments made by crustaceans to adapt to varying salinity environments. The eyestalk, a neuroendocrine organ in crustaceans, plays a crucial role in salinity acclimatization. To elucidate the molecular mechanisms underlying eyestalk involvement in mud crab (Scylla paramamosain) acclimatization, we employed RNA-seq technology to analyze transcriptomic changes in the eyestalk under low (5 ppt) and standard (23 ppt) salinity conditions. This analysis revealed 5431 differentially expressed genes (DEGs), with 2372 upregulated and 3059 downregulated. Notably, these DEGs were enriched in crucial biological pathways like metabolism, osmoregulation, and signal transduction. To validate the RNA-seq data, we further analyzed 15 DEGs of interest using qRT-PCR. Our results suggest a multifaceted role for the eyestalk: maintaining energy homeostasis, regulating hormone synthesis and release, PKA activity, and downstream signaling, and ensuring proper ion and osmotic balance. Furthermore, our findings indicate that the crustacean hyperglycemic hormone (CHH) may function as a key regulator, modulating carbonic anhydrase expression through the activation of the PKA signaling pathway, thereby influencing cellular osmoregulation, and associated metabolic processes. Overall, our study provides valuable insights into unraveling the molecular mechanisms of mud crab acclimatization to low salinity environments.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
2
|
Mo N, Shao S, Yang Y, Bao C, Cui Z. Identifying low salinity adaptation gene expression in the anterior and posterior gills of the mud crab (Scylla paramamosain) by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101166. [PMID: 38070330 DOI: 10.1016/j.cbd.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024]
Abstract
In the present study, BGISEQ-500 RNA-Seq technology was adopted to investigate how Scylla paramamosain adapts to salinity tolerance at the molecular level and explores changes in gene expression linked to salinity adaptation following exposure to both low salinity (5 ‰) and standard salinity (23 ‰) conditions. A total of 1100 and 520 differentially expressed genes (DEGs) were identified in the anterior and posterior gills, respectively, and their corresponding expression patterns were visualized in volcano plots and a heatmap. Further analysis highlighted significant enrichment of well-established gene functional categories and signaling pathways, including those what associated with cellular stress response, ion transport, energy metabolism, amino acid metabolism, H2O transport, and physiological stress compensation. We also selected key DEGs within the anterior and posterior gills that encode pivotal stress adaptation and tolerance modulators, including AQP, ABCA1, HSP 10, A35, CAg, NKA, VPA, CAc, and SPS. Interestingly, A35 in the gills might regulate osmolality by binding CHH in response to low salinity stress or serve as a mechanism for energy compensation. Taken together, our findings elucidated the intricate molecular mechanism employed by S. paramamosain for salinity adaptation, which involved distinct gene expression patterns in the anterior and posterior gills. These findings provide the foothold for subsequent investigations into salinity-responsive candidate genes and contribute to a deeper understanding of S. paramamosain's adaptation mechanisms in low-salinity surroundings, which is crucial for the development of low-salinity species cultivation and the establishment of a robust culture model.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
3
|
Mo N, Feng T, Zhu D, Liu J, Shao S, Han R, Lu W, Zhan P, Cui Z. Analysis of adaptive molecular mechanisms in response to low salinity in antennal gland of mud crab, Scylla paramamosain. Heliyon 2024; 10:e25556. [PMID: 38356600 PMCID: PMC10865330 DOI: 10.1016/j.heliyon.2024.e25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
As an important marine aquaculture species, the mud crab (Scylla paramamosain) is a good candidate for studying the osmoregulatory mechanism of crustaceans. While previous studies have focused on the osmoregulatory function of the gills, this study aims to explore the osmoregulatory function of the antennal glands. By the comparative transcriptomic analysis, we found the pathways of ion regulation including "proximal tubule bicarbonate reclamation" and "mineral absorption" were activated in the antennal glands of the crabs long-term dwelling in low salinity. The enhanced ionic reabsorption was associated with up-regulated ion transport genes such as NKA, CA-c, VPA, and NHE, and with energy metabolism genes such as MDH, SLC25, and PEPCK. The upregulation of NKA and CA-c was also verified by the increased enzyme activity. The lowered osmolality and ion concentration of the hemolymph and the enlarged labyrinth lumen and hemolymph capillary inside the antennal glands indicated the infiltration of external water and the responsively increase of urine excretion, which explained the requirement of enhanced ionic reabsorption. To further confirm these findings, we examined the change of gene expression, enzyme activity, internal ion concentration, and external ion concentration during a 96 h low salinity challenge with seven intervals. The results were basically consistent with the results as shown in the long-term low salinity adaptation. The present study provides valuable information on the osmoregulatory function of the antennal glands of S. paramamosain. The implication of this study in marine aquaculture is that it provides valuable information on the osmoregulatory mechanism of mud crabs, which can be used to improve their culture conditions and enhance their tolerance to salinity stress. The identified genes and pathways involved in osmoregulation can also be potential targets for genetic selection and breeding programs to develop more resilient mud crab strains for aquaculture.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Jiaxin Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Pingping Zhan
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
4
|
Mo N, Shao S, Zhuang Y, Yang Y, Cui Z, Bao C. Activation and characterization of G protein-coupled receptors for CHHs in the mud crab, Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111563. [PMID: 38122925 DOI: 10.1016/j.cbpa.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yan Zhuang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
5
|
Shen C, Feng G, Zhao F, Huang X, Wang M, Wang H. Integration of Transcriptomics and Proteomics Analysis Reveals the Molecular Mechanism of Eriocheir sinensis Gills Exposed to Heat Stress. Antioxidants (Basel) 2023; 12:2020. [PMID: 38136140 PMCID: PMC10740794 DOI: 10.3390/antiox12122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Heat stress is an increasingly concerning topic under global warming. Heat stress can induce organisms to produce excess reactive oxygen species, which will lead to cell damage and destroy the antioxidant defense of aquatic animals. Chinese mitten crab, Eriocheir sinensis, is sensitive to the change in water temperature, and parent crabs are more vulnerable during the breeding stage. In the present study, the multi-omics responses of parent E. sinensis gills to heat stress (24 h) were determined via transcriptome and proteome. The integrative analysis revealed that heat shock protein 70 (HSP70) and glutathione s-transferase (GST) were significantly up-regulated at gene and protein levels after heat stress, indicating that HSP70 and the antioxidant system participated in the regulatory mechanism of heat stress to resist oxidative damage. Moreover, the "Relaxin signaling pathway" was also activated at gene and protein levels under 30 °C stress, which implied that relaxin may be essential and responsible for reducing the oxidative damage of gills caused by extreme heat stress. These findings provided an understanding of the regulation mechanism in E. sinensis under heat stress at gene and protein levels. The mining of key functional genes, proteins, and pathways can also provide a basis for the cultivation of new varieties resistant to oxidative stress.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Min Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Haihua Wang
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| |
Collapse
|
6
|
Wang Y, Li H, Wei J, Hong K, Zhou Q, Liu X, Hong X, Li W, Liu C, Zhu X, Yu L. Multi-Effects of Acute Salinity Stress on Osmoregulation, Physiological Metabolism, Antioxidant Capacity, Immunity, and Apoptosis in Macrobrachium rosenbergii. Antioxidants (Basel) 2023; 12:1836. [PMID: 37891915 PMCID: PMC10604327 DOI: 10.3390/antiox12101836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Salinity stress can trigger a series of physiological changes. However, the mechanism underlying the response to acute salinity stress in Macrobrachium rosenbergii remains poorly understood. In this study, osmoregulation, physiological metabolism, antioxidant capacity, and apoptosis were examined over 96 h of acute salinity stress. Hemolymph osmolality increased with increasing salinity. After 48 h of salinity exposure, the glucose, triglycerides, total protein, and total cholesterol contents in two salinity stress groups (13 and 26‱ salinity) were significantly lower than those in the 0‱ salinity group. The highest levels of these parameters were detected at 6 h; however, superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were the lowest at 96 h in the 13‱ salinity group. The activity of immunity-related enzyme alkaline phosphatase (AKP) showed a decreasing trend with increasing salinity and remained at a low level in the 26‱ salinity group throughout the experiment. No significant differences were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT), or lysozyme (LZM) among the three treatments at 96 h. After 96 h of salinity treatments, the gill filament diameter significantly decreased, and a more pronounced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive signal was detected in the 13‱ and 26‱ groups compared to that in the 0‱ group. Expression levels of apoptosis-related genes, including Cysteine-aspartic acid protease 3 (Caspase 3), Cysteine-aspartic acid protease 8 (Caspase 8), Cytochrome c (Cyt-c), tumor suppressor gene (P53), Nuclear factor kappa-B (NF-κB), and B cell lymphoma 2 ovarian killer (Bok) were significantly higher in the 26‱ salinity group than in the other groups at 24 h, but lower than those in the 0‱ salinity group at 96 h. Cyt-c and P53 levels exhibited a significantly positive relationship with MDA, AST, and LZM activity during salinity stress. In the 13‱ salinity group, Bok expression was significantly correlated with SOD, T-AOC, AKP, acid phosphatase, and LZM activity, whereas in the 26‱ group, the AST content was positively correlated with Caspase 8, Cyt-c, and P53 expression. A significant negative relationship was observed between Caspase 3 expression and catalase (CAT) activity. These findings provide insight into the mechanisms underlying the response to acute salinity stress and will contribute to improving M. rosenbergii aquaculture and management practices.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Huarong Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Kunhao Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Qiaoyan Zhou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Chao Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| |
Collapse
|
7
|
Chen L, Zhang H, Shi H, Xue C, Wang Q, Yu F, Xue Y, Wang Y, Li Z. The flavor profile changes of Pacific oysters (Crassostrea gigas) in response to salinity during depuration. Food Chem X 2022; 16:100485. [DOI: 10.1016/j.fochx.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
|
8
|
Tseng KY, Tsai JR, Lin HC. A Multi-Species Comparison and Evolutionary Perspectives on Ion Regulation in the Antennal Gland of Brachyurans. Front Physiol 2022; 13:902937. [PMID: 35721559 PMCID: PMC9201427 DOI: 10.3389/fphys.2022.902937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brachyurans inhabit a variety of habitats and have evolved diverse osmoregulatory patterns. Gills, antennal glands and a lung-like structure are important organs of crabs that maintain their homeostasis in different habitats. Species use different processes to regulate ions in the antennal gland, especially those with high terrestriality such as Grapsoidea and Ocypodoidea. Our phylogenetic generalized least square (PGLS) result also suggested that there is a correlation between antennal gland NKA activity and urine-hemolymph ratio for Na+ concentration in hypo-osmotic environments among crabs. Species with higher antennal gland NKA activity showed a lower urine-hemolymph ratio for Na+ concentration under hypo-osmotic stress. These phenomenon may correlate to the structural and functional differences in gills and lung-like structure among crabs. However, a limited number of studies have focused on the structural and functional differences in the antennal gland among brachyurans. Integrative and systemic methods like next generation sequencing and proteomics method can be useful for investigating the differences in multi-gene expression and sequences among species. These perspectives can be combined to further elucidate the phylogenetic history of crab antennal glands.
Collapse
Affiliation(s)
- Kuang-Yu Tseng
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jyuan-Ru Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- *Correspondence: Hui-Chen Lin,
| |
Collapse
|
9
|
Zhang L, Yin M, Zheng Y, Tao NP, Wu X, Wang X. Short-term rearing in brackish water regulates the taste-related metabolites of abdomen muscle for adult male Eriocheir sinensis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Zhang L, Yin M, Zheng Y, Xu CH, Tao NP, Wu X, Wang X. Brackish water improves the taste quality in meat of adult male Eriocheir sinensis during the postharvest temporary rearing. Food Chem 2020; 343:128409. [PMID: 33218856 DOI: 10.1016/j.foodchem.2020.128409] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
We investigated the effect of temporary rearing in brackish water on the taste quality in meat of crab cooked. The main salinity-responsive factors included 5'-nucleotides and free amino acids (FAAs) in crab meat that were identified using tri-step infrared spectroscopy. Compared to the fresh water group, the contents of 5'-adenosine monophosphate and 5'-inosine monophosphate in the brackish water group significantly increased in the 2nd week and decreased in the 6th week, respectively. The contribution ratio of umami FAAs increased from 8.1 to 13.5% in the 4th week in the brackish water group, showing maximum value of equivalent umami concentration. Moreover, Ca2+ and Cl- contents significantly increased in the 4th and 6th weeks, respectively (P < 0.05). Infrared spectroscopy was an effective method to identify the taste components. With respect to the taste quality, four weeks were determined as the best period for temporary rearing of the crab in brackish water.
Collapse
Affiliation(s)
- Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yao Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Chang-Hua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Ning-Ping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Xugan Wu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| |
Collapse
|
11
|
Wei H, Wang H, Tang L, Mu C, Ye C, Chen L, Wang C. High-throughput sequencing reveals the core gut microbiota of the mud crab (Scylla paramamosain) in different coastal regions of southern China. BMC Genomics 2019; 20:829. [PMID: 31703624 PMCID: PMC6842235 DOI: 10.1186/s12864-019-6219-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background Scylla paramamosain is a commercially important mud crab. The microbiota is a community that inhabits the crab intestine, and is important for physiological functional and host health. Results Proteobacteria, Firmicutes, Bacteroidetes, Tenericutes, Spirochaetae and Fusobacteria were the dominant phyla of the 36 representative phyla. Eleven genera of the 820 representative genera were considered as core gut microbiota and were distributed in the five dominant phyla. The core genus of the Proteobacteria included Arcobacter, Photobacterium, Vibrio, Shewanella and Desulfovibrio. The other four phyla contained one or two genera. Male and female crab samples had two different core genera, (male samples: Psychrilyobacter & Lactococcus; female samples: Clostridium_sensu_stricto_11 and Candidatus_Bacilloplasma). Conclusions This is the first time core intestinal microbiota have been identified in crab from nine coastal regions of southern China. This study provides sequencing data related to the gut microbiota of S. paramamosain, and may contribute to probiotic development for S. paramamosain aquaculture industries.
Collapse
Affiliation(s)
- Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chunyu Ye
- Agricultural and Rural Bureau, Sanmen County, Zhejiang Province, China
| | - Lizhi Chen
- Fishery Technology Station, Sanmen County, Zhejiang Province, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
12
|
Nie Y, Hu J, Hou Q, Zheng W, Zhang X, Yang T, Ma L, Yan X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells. FASEB J 2019; 33:10705-10716. [PMID: 31262191 DOI: 10.1096/fj.201900253rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative damages have adverse effects on mammals. Growing studies have focused on exploring new antioxidants. Here, we report that Lactobacillus frumenti increases the total antioxidation capacity activities and decreases the total reactive oxygen species levels in porcine intestinal epithelial cells. Comparative proteomics revealed that expressions of peroxiredoxin 2, isocitrate dehydrogenase 1, NAD(P)H dehydrogenase quinone 1, antioxidant protein 1, and metallothionein-2A, which are associated with antioxidant defense system, were significantly increased with L. frumenti treatment. In germ-free mice, L. frumenti treatment also remarkably improves the intestinal antioxidant capacity. We further illustrated that nitric oxide production-mediated by nitric oxide synthase 1 activation is essential for L. frumenti-induced improvements in intestinal epithelial antioxidant capacity and barrier function. This study suggested that L. frumenti may be a potential probiotic used to prevent oxidative stress-induced aging and diseases in mammals.-Nie, Y., Hu, J., Hou, Q., Zheng, W., Zhang, X., Yang, T., Ma, L., Yan, X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yangfan Nie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| |
Collapse
|
13
|
Gene Identification and Characterization of Correlations for DEPs_DEGs Same Trend Responding to Salinity Adaptation in Scylla paramamosain. Int J Genomics 2019; 2019:7940405. [PMID: 30881981 PMCID: PMC6387702 DOI: 10.1155/2019/7940405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/15/2018] [Accepted: 11/11/2018] [Indexed: 01/22/2023] Open
Abstract
Scylla paramamosain is a commercially important species distributed along the coast of southern China and other Indo-Pacific countries. Sudden salinity drop exceeding the adjustment capability of S. paramamosain can result in damage or even mortality. In our previous study, we had analyzed the mechanism of adapting sudden drop in salinity from the level of transcriptomics and proteomics, respectively. This study performed a correlation analysis of RNA sequencing transcriptomics and iTRAQ proteomics in order to investigate the adaptation mechanisms to sudden salinity drop from 23‰ to 3‰. There were 3954 correlations and a total of 15 correlations for differentially expressed proteins (DEPs) and differentially expressed genes (DEGs) from proteomics and transcriptomics. The correlation between DEPs and DEGs was 0, and the Spearman correlation coefficient of the same trend correlation for DEPs and DEGs was the highest, reaching 0.9080. KEGG pathway enrichment correlation revealed that protein digestion and absorption (Ko04974), proximal tubule bicarbonate (Ko04964), and bile secretion (Ko04976) played important roles in Na+/H+ and Na+/K+ exchange. In addition, important genes related to osmoregulation, such as ion transport and carbonic anhydrase, were also detected in the correlation analysis for same trend DEPs_DEGs. In conclusion, the proteome and transcriptome correlation results from this study indicate that ion transport plays a critical role in the adaptation of S. paramamosain to sudden reduction in salinity.
Collapse
|
14
|
Huang WY, Wang YP, Mahmmod YS, Wang JJ, Liu TH, Zheng YX, Zhou X, Zhang XX, Yuan ZG. A Double-Edged Sword: Complement Component 3 in Toxoplasma gondii Infection. Proteomics 2019; 19:e1800271. [PMID: 30515942 DOI: 10.1002/pmic.201800271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Sprague Dawley rats and Kunming (KM) mice are artificially infected with type II Toxoplasma gondii strain Prugniaud (Pru) to generate toxoplasmosis, which is a fatal disease mediated by T. gondii invasion of the central nervous system (CNS) by unknown mechanisms. The aim is to explore the mechanism of differential susceptibility of mice and rats to T. gondii infection. Therefore, a strategy of isobaric tags for relative and absolute quantitation (iTRAQ) is established to identify differentially expressed proteins (DEPs) in the rats' and the mice's brains compared to the healthy groups. In KM mice, which is susceptible to T. gondii infection, complement component 3 (C3) is upregulated and the tight junction (TJ) pathway shows a disorder. It is presumed that T. gondii-stimulated C3 disrupts the TJ of the blood-brain barrier in the CNS. This effect allows more T. gondii passing to the brain through the intercellular space.
Collapse
Affiliation(s)
- Wan-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Ya-Pei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Yasser S Mahmmod
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia Province, Egypt
| | - Jun-Jie Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Tang-Hui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Yu-Xiang Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Xue Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, P. R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, P. R. China
| |
Collapse
|
15
|
Hu J, Ma L, Zheng W, Nie Y, Yan X. Lactobacillus gasseri LA39 Activates the Oxidative Phosphorylation Pathway in Porcine Intestinal Epithelial Cells. Front Microbiol 2018; 9:3025. [PMID: 30619122 PMCID: PMC6297174 DOI: 10.3389/fmicb.2018.03025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbial interactions with the host epithelium have important roles in host health. Our previous data have suggested that Lactobacillus gasseri LA39 is the predominant intestinal Lactobacillus in weaned piglets. However, the regulatory role of L. gasseri LA39 in the intestinal epithelial protein expression in piglets remains unclear. In the present study, we conducted comparative proteomics approach to investigate the intestinal epithelial protein profile alteration caused by L. gasseri LA39 in piglets. The expressions of 15 proteins significantly increased, whereas the expressions of 13 proteins significantly decreased in the IPEC-J2 cells upon L. gasseri LA39 treatment. Bioinformatics analyses, including COG function annotation, GO annotation, and KEGG pathway analysis for the differentially expressed proteins revealed that the oxidative phosphorylation (OXPHOS) pathway in IPEC-J2 cells was significantly activated by L. gasseri LA39 treatment. Further data indicated that two differentially expressed proteins UQCRC2 and TCIRG1, associated with the OXPHOS pathway, and cellular ATP levels in IPEC-J2 cells were significantly up-regulated by L. gasseri LA39 treatment. Importantly, the in vivo data indicated that oral gavage of L. gasseri LA39 significantly increased the expression of UQCRC2 and TCIRG1 and the cellular ATP levels in the intestinal epithelial cells of weaned piglets. Our results, both in vitro and in vivo, reveal that L. gasseri LA39 activates the OXPHOS pathway and increases the energy production in porcine intestinal epithelial cells. These findings suggest that L. gasseri LA39 may be a potential probiotics candidate for intestinal energy production promotion and confers health-promoting functions in mammals.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Yangfan Nie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Hubei, China
| |
Collapse
|