1
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Sun S, Shyr Z, McDaniel K, Fang Y, Tao D, Chen CZ, Zheng W, Zhu Q. Reversal Gene Expression Assessment for Drug Repurposing, a Case Study of Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-4765282. [PMID: 39315277 PMCID: PMC11419258 DOI: 10.21203/rs.3.rs-4765282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement. This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database. We prioritized the candidates via hierarchical clustering of their expression signatures and quantification of their reversal strength by calculating two self-defined indices based on the GGEP genes' log2 foldchange (LFCs) that the drug candidates could induce. Among eight prioritized candidates, in-vitro experiments validated Clofarabine and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells. The success of this study illustrated a promising avenue for accelerating drug development by uncovering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases and non-rare diseases.
Collapse
Affiliation(s)
- Shixue Sun
- NCATS: National Center for Advancing Translational Sciences
| | - Zeenat Shyr
- NCATS: National Center for Advancing Translational Sciences
| | - Kathleen McDaniel
- NCATS ETB: National Center for Advancing Translational Sciences Early Translation Branch
| | - Yuhong Fang
- NCATS: National Center for Advancing Translational Sciences
| | - Dingyin Tao
- NCATS: National Center for Advancing Translational Sciences
| | | | - Wei Zheng
- NCATS: National Center for Advancing Translational Sciences
| | - Qian Zhu
- NCATS: National Center for Advancing Translational Sciences
| |
Collapse
|
3
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Yan T, Jiang Q, Ni G, Ma H, Meng Y, Kang G, Xu M, Peng F, Li H, Chen X, Wang M. WZ-3146 acts as a novel small molecule inhibitor of KIF4A to inhibit glioma progression by inducing apoptosis. Cancer Cell Int 2024; 24:221. [PMID: 38937742 PMCID: PMC11209999 DOI: 10.1186/s12935-024-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Glioma is considered the most common primary malignant tumor of the central nervous system. Although traditional treatments have not achieved satisfactory outcomes, recently, targeted therapies for glioma have shown promising efficacy. However, due to the single-target nature of targeted therapy, traditional targeted therapies are ineffective; thus, novel therapeutic targets are urgently needed. METHODS The gene expression data for glioma patients were derived from the GEO (GSE4290, GSE50161), TCGA and CGGA databases. Next, the upregulated genes obtained from the above databases were cross-analyzed, finally, 10 overlapping genes (BIRC5, FOXM1, EZH2, CDK1, KIF11, KIF4A, NDC80, PBK, RRM2, and TOP2A) were ultimately screened and only KIF4A expression has the strongest correlation with clinical characteristics in glioma patients. Futher, the TCGA and CGGA database were utilized to explore the correlation of KIF4A expression with glioma prognosis. Then, qRT-PCR and Western blot was used to detect the KIF4A mRNA and protein expression level in glioma cells, respectively. And WZ-3146, the small molecule inhibitor targeting KIF4A, were screened by Cmap analysis. Subsequently, the effect of KIF4A knockdown or WZ-3146 treatment on glioma was measured by the MTT, EdU, Colony formation assay and Transwell assay. Ultimately, GSEA enrichment analysis was performed to find that the apoptotic pathway could be regulated by KIF4A in glioma, in addition, the effect of WZ-3146 on glioma apoptosis was detected by flow cytometry and Western blot. RESULTS In the present study, we confirmed that KIF4A is abnormally overexpressed in glioma. In addition, KIF4A overexpression is a key indicator of glioma prognosis; moreover, suppressing KIF4A expression can inhibit glioma progression. We also discovered that WZ-3146, a small molecule inhibitor of KIF4A, can induce apoptosis in glioma cells and exhibit antiglioma effects. CONCLUSION In conclusion, these observations demonstrated that targeting KIF4A can inhibit glioma progression. With further research, WZ-3146, a small molecule inhibitor of KIF4A, could be combined with other molecular targeted drugs to cooperatively inhibit glioma progression.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China
| | - Guangpu Ni
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Haofeng Ma
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Guiqiong Kang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Meifang Xu
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurology, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Fei Peng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huadong Li
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China.
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
5
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
6
|
Zeng S, Wang Q, Zhou R, Wang D. KIF4A functions as a diagnostic and prognostic biomarker and regulates tumor immune microenvironment in skin cutaneous melanoma. Pathol Res Pract 2024; 254:155166. [PMID: 38286055 DOI: 10.1016/j.prp.2024.155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND KIF4A is upregulated in various malignancies and serves as an independent risk factor. However, its function in skin cutaneous melanoma (SKCM) and the regulation of the immunological environment remains unknown. METHODS We first explored the mRNA and protein levels of KIF4A in SKCM through public databases. Then, the co-expressed genes with KIF4A in SKCM and their functional enrichment analysis were performed. Moreover, the clinical value, relationship with immune infiltration and tumor microenvironment (TME), as well as the correlation between KIF4A and immunomodulators were evaluated. In addition, we validated the function of KIF4A by in vitro experiments such as CCK-8 assay, clone formation and wound healing assay. RESULTS Our data reveal that the mRNA and protein levels of KIF4A are highly expressed in SKCM. Moreover, functional enrichment analysis of the top 50 co-expressed genes with KIF4A showed significant association with organelle fission, tubulin binding and immune processes. KIF4A can distinguish SKCM from normal tissue and predict a poorer prognosis. A negative association was observed between KIF4A and TME, and KIF4A exhibited a negative correlation with most immunomodulators. Additionally, the knockdown of KIF4A inhibited the proliferation and migration ability of A375 cells. CONCLUSIONS Our findings suggest that KIF4A promotes the progression of SKCM and is negatively associated with immune infiltration and immunomodulators, which indicates a poor prognosis.
Collapse
Affiliation(s)
- Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
7
|
Bordey A. KIF4 Gene Variant's Disruption of PARP1 Signaling Increases Anxiety and Seizure Susceptibility. Epilepsy Curr 2023; 23:257-258. [PMID: 37662464 PMCID: PMC10470092 DOI: 10.1177/15357597231175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
KIF4 Regulates Neuronal Morphology and Seizure Susceptibility via the PARP1 Signaling Pathway Wan Y, Morikawa M, Morikawa M, Iwata S, Naseer MI, Chaudhary AGA, Tanaka Y, Hirokawa N. J Cell Biol . 2023;222(2):e202208108. doi:10.1083/jcb.202208108 Epilepsy is a common neurological disease worldwide, and one of its causes is genetic abnormalities. Here, we identified a point mutation in KIF4A, a member of kinesin superfamily molecular motors, in patients with neurological disorders such as epilepsy, developmental delay, and intellectual disability. KIF4 is involved in the poly (ADP-ribose) polymerase (PARP) signaling pathway, and the mutation (R728Q) strengthened its affinity with PARP1 through elongation of the KIF4 coiled-coil domain. Behavioral tests showed that KIF4-mutant mice exhibited mild developmental delay with lower seizure threshold. Further experiments revealed that the KIF4 mutation caused aberrant morphology in dendrites and spines of hippocampal pyramidal neurons through PARP1-TrkB-KCC2 pathway. Furthermore, supplementing NAD, which activates PARP1, could modulate the TrkB-KCC2 pathway and rescue the seizure susceptibility phenotype of the mutant mice. Therefore, these findings indicate that KIF4 is engaged in a fundamental mechanism regulating seizure susceptibility and could be a potential target for epilepsy treatment.
Collapse
Affiliation(s)
- Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine
| |
Collapse
|
8
|
Zakrzewicz D, Geyer J. Interactions of Na +/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem 2023:hsz-2022-0345. [PMID: 37103224 DOI: 10.1515/hsz-2022-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
9
|
Wu J, Li L, Zhong H, Zhang HH, Li J, Zhang HB, Zhao YQ, Xu B, Song QB. Bioinformatic and Experimental Analyses Reveal That KIF4A Is a Biomarker of Therapeutic Sensitivity and Predicts Prognosis in Cervical Cancer Patients. Curr Med Sci 2022; 42:1273-1284. [PMID: 36260268 DOI: 10.1007/s11596-022-2636-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aims to investigate the expression, prognostic value, and function of kinesin superfamily 4A (KIF4A) in cervical cancer. METHODS Cervical cancer cell lines (Hela and SiHa) and TCGA data were used for experimental and bioinformatic analyses. Overall survival (OS) and progression free survival (PFS) were compared between patients with high or low KIF4A expression. Copy number variation (CNV) and somatic mutations of patients were visualized and GISTIC 2.0 was used to identify significantly altered sites. The function of KIF4A was also explored based on transcriptome analysis and validated by experimental methods. Chemotherapeutic and immunotherapeutic benefits were inferred using multiple reference databases and algorithms. RESULTS Patients with high KIF4A expression had better OS and PFS. KIF4A could inhibit proliferation and migration and induce G1 arrest of cervical cancer cells. Higher CNV load was observed in patients with low KIF4A expression, while the group with low KIF4A expression displayed more significantly altered sites. A total of 13 genes were found to mutate more in the low KIF4A expression group, including NOTCH1 and PUM1. The analysis revealed that low KIF4A expression may indicate an immune escape phenotype, and patients in this group may benefit more from immunotherapy. With respect to chemotherapy, cisplatin and gemcitabine may respond better in patients with high KIF4A expression, while 5-fluorouracil etc. may be responded better in patients with low KIF4A expression CONCLUSION: KIF4A is a tumor suppressor gene in cervical cancer, and it can be used as a prognostic and therapeutic biomarker in cervical cancer.
Collapse
Affiliation(s)
- Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Hao-Han Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Hui-Bo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China.,Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Ya-Qi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China.
| | - Qi-Bin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430030, China.
| |
Collapse
|
10
|
Fu Y, Li F, Sun X, Zhu C, Fan B, Zhong K. KIF4 enforces the progression of colorectal cancer by inhibiting the autophagy via activating the Hedgehog signaling pathway. Arch Biochem Biophys 2022; 731:109423. [DOI: 10.1016/j.abb.2022.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
|
11
|
Zhang S, Liu J, Li F, Yang M, Wang J. EZH2 suppresses insulinoma development by epigenetically reducing KIF4A expression via H3K27me3 modification. Gene X 2022; 822:146317. [PMID: 35182680 DOI: 10.1016/j.gene.2022.146317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023] Open
Abstract
Kinesin family member 4A (KIF4A), located in the human chromosome band Xq13.1, is aberrantly overexpressed in various cancers. Our study intended to assess the expression of KIF4A in insulinoma and to gain new insights into the molecular mechanisms of this rare disease. First, KIF4A was significantly recruited in pancreatic endocrine cells relative to other cell types. A significant correlation existed between the overexpression of KIF4A and the poor survival of pancreatic adenocarcinoma patients. As revealed by CCK-8, TUNEL assay, flow cytometry, wound healing, Matrigel-transwell, senescence-associated β-galactosidase staining, ELISA, and subcutaneous tumor formation analysis in nude mice, knocking down KIF4A significantly inhibited the growth and metastasis of insulinoma cells in vivo and in vitro. Mechanistically, we observed that KIF4A promoter sequences had reduced H3K27me3 modifications, and decline in enhancer of zeste homolog-2 (EZH2) expression promoted KIF4A expression by reducing the modification, thus leading to insulinoma. Moreover, EZH2 knockdown-induced insulinoma cell proliferation was dependent on KIF4A overexpression since KIF4A knockdown eradicated shEZH2-induced proliferation of insulinoma cells. In summary, KIF4A was identified as a possible therapeutic target for insulinoma.
Collapse
Affiliation(s)
- Suzhen Zhang
- Graduate School of Shanxi Medical University, Taiyuan 030013, Shanxi, PR China; The Second Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China
| | - Jun Liu
- Department of Infection, People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi, PR China
| | - Feng Li
- Department of Cell Biology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China
| | - Mudan Yang
- The Second Department of Gastroenterology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, PR China.
| | - Junping Wang
- Graduate School of Shanxi Medical University, Taiyuan 030013, Shanxi, PR China; Department of Gastroenterology, People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi, PR China.
| |
Collapse
|
12
|
Gad SA, Sugiyama M, Tsuge M, Wakae K, Fukano K, Oshima M, Sureau C, Watanabe N, Kato T, Murayama A, Li Y, Shoji I, Shimotohno K, Chayama K, Muramatsu M, Wakita T, Nozaki T, Aly HH. The kinesin KIF4 mediates HBV/HDV entry through the regulation of surface NTCP localization and can be targeted by RXR agonists in vitro. PLoS Pathog 2022; 18:e1009983. [PMID: 35312737 PMCID: PMC8970526 DOI: 10.1371/journal.ppat.1009983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/31/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Intracellular transport via microtubule-based dynein and kinesin family motors plays a key role in viral reproduction and transmission. We show here that Kinesin Family Member 4 (KIF4) plays an important role in HBV/HDV infection. We intended to explore host factors impacting the HBV life cycle that can be therapeutically addressed using siRNA library transfection and HBV/NLuc (HBV/NL) reporter virus infection in HepG2-hNTCP cells. KIF4 silencing resulted in a 3-fold reduction in luciferase activity following HBV/NL infection. KIF4 knockdown suppressed both HBV and HDV infection. Transient KIF4 depletion reduced surface and raised intracellular NTCP (HBV/HDV entry receptor) levels, according to both cellular fractionation and immunofluorescence analysis (IF). Overexpression of wild-type KIF4 but not ATPase-null KIF4 mutant regained the surface localization of NTCP and significantly restored HBV permissiveness in these cells. IF revealed KIF4 and NTCP colocalization across microtubule filaments, and a co-immunoprecipitation study revealed that KIF4 interacts with NTCP. KIF4 expression is regulated by FOXM1. Interestingly, we discovered that RXR agonists (Bexarotene, and Alitretinoin) down-regulated KIF4 expression via FOXM1-mediated suppression, resulting in a substantial decrease in HBV-Pre-S1 protein attachment to HepG2-hNTCP cell surface and subsequent HBV infection in both HepG2-hNTCP and primary human hepatocyte (PXB) (Bexarotene, IC50 1.89 ± 0.98 μM) cultures. Overall, our findings show that human KIF4 is a critical regulator of NTCP surface transport and localization, which is required for NTCP to function as a receptor for HBV/HDV entry. Furthermore, small molecules that suppress or alleviate KIF4 expression would be potential antiviral candidates targeting HBV and HDV entry. Understanding HBV/HDV entry machinery and the mechanism by which NTCP (HBV/HDV entry receptor) surface expression is regulated is crucial to develop antiviral entry inhibitors. We found that NTCP surface transport is mainly controlled by the motor kinesin KIF4. Surprisingly, KIF4 was negatively regulated by RXR receptors through FOXM1-mediated suppression. This study not only mechanistically correlated the role of RXR receptors in regulating HBV/HDV entry but also suggested a novel approach to develop therapeutic rexinoids for preventing HBV and/or HDV infections in important clinical situations, such as in patients undergoing liver transplantation or those who are at a high risk of HBV infection and unresponsive to HBV vaccination.
Collapse
Affiliation(s)
- Sameh A. Gad
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Kosho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ikuo Shoji
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunitada Shimotohno
- Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (TW); (HHA)
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hussein H. Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (TW); (HHA)
| |
Collapse
|
13
|
Raudaskoski M. Kinesin Motors in the Filamentous Basidiomycetes in Light of the Schizophyllum commune Genome. J Fungi (Basel) 2022; 8:jof8030294. [PMID: 35330296 PMCID: PMC8950801 DOI: 10.3390/jof8030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Kinesins are essential motor molecules of the microtubule cytoskeleton. All eukaryotic organisms have several genes encoding kinesin proteins, which are necessary for various cell biological functions. During the vegetative growth of filamentous basidiomycetes, the apical cells of long leading hyphae have microtubules extending toward the tip. The reciprocal exchange and migration of nuclei between haploid hyphae at mating is also dependent on cytoskeletal structures, including the microtubules and their motor molecules. In dikaryotic hyphae, resulting from a compatible mating, the nuclear location, synchronous nuclear division, and extensive nuclear separation at telophase are microtubule-dependent processes that involve unidentified molecular motors. The genome of Schizophyllum commune is analyzed as an example of a species belonging to the Basidiomycota subclass, Agaricomycetes. In this subclass, the investigation of cell biology is restricted to a few species. Instead, the whole genome sequences of several species are now available. The analyses of the mating type genes and the genes necessary for fruiting body formation or wood degrading enzymes in several genomes of Agaricomycetes have shown that they are controlled by comparable systems. This supports the idea that the genes regulating the cell biological process in a model fungus, such as the genes encoding kinesin motor molecules, are also functional in other filamentous Agaricomycetes.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
14
|
Network models of prostate cancer immune microenvironments identify ROMO1 as heterogeneity and prognostic marker. Sci Rep 2022; 12:192. [PMID: 34996995 PMCID: PMC8741951 DOI: 10.1038/s41598-021-03946-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the fifth leading cause of death from cancer in men worldwide. Its treatment remains challenging due to the heterogeneity of the tumor, mainly because of the lack of effective and targeted prognostic markers at the system biology level. First, the data were retrieved from TCGA dataset, and valid samples were obtained by consistent clustering and principal component analysis; next, key genes were analyzed for prognosis of PCa using WGCNA, MEGENA, and LASSO Cox regression model analysis, while key genes were screened based on disease-free survival significance. Finally, TIMER data were selected to explore the relationship between genes and tumor immune infiltration, and GSCAlite was used to explore the small-molecule targeted drugs that act with them. Here, we used tumor subtype analysis and an energetic co-expression network algorithm of WGCNA and MEGENA to identify a signal dominated by the ROMO1 to predict PCa prognosis. Cox regression analysis of ROMO1 was an independent influence, and the prognostic value of this biomarker was validated in the training set, the validated data itself, and external data, respectively. This biomarker correlates with tumor immune infiltration and has a high degree of infiltration, poor prognosis, and strong correlation with CD8+T cells. Gene function annotation and other analyses also implied a potential molecular mechanism for ROMO1. In conclusion, we putative ROMO1 as a portal key prognostic gene for the diagnosis and prognosis of PCa, which provides new insights into the diagnosis and treatment of PCa.
Collapse
|
15
|
Wang L, Liu G, Bolor-Erdene E, Li Q, Mei Y, Zhou L. Identification of KIF4A as a prognostic biomarker for esophageal squamous cell carcinoma. Aging (Albany NY) 2021; 13:24050-24070. [PMID: 34775374 PMCID: PMC8610135 DOI: 10.18632/aging.203585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common and aggressive tumor worldwide, and the long-term survival of these patients remains poor. Three databases (GSE17351, GSE20347, and GSE100942) were obtained from Gene Expression Omnibus, and 193 differentially expressed genes including 56 upregulated and 137 downregulated genes were identified by paired test using limma R package. Then, functional enrichments by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed these genes were mainly related protein digestion and absorption, and IL-17 signaling pathway. We then constructed a protein-protein interaction network and cytoHubba module to determine the six hub genes and overall survival analysis of the six hub genes were evaluated by UALCAN and GEPIA2 analysis. Ultimately, the experimental results confirmed the KIF4A was overexpressed in the ESCC tissues and cell lines compared with the normal esophageal mucosal tissues and was linked to poor prognosis. Moreover, we also revealed that KIF4A facilitates proliferation, cell cycle, migration, and invasion of ESCC in vivo and in vitro. Overall, these findings demonstrated that KIF4A could serve as diagnostic and prognostic biomarkers and may help facilitate therapeutic targets in ESCC patients.
Collapse
Affiliation(s)
- Lingwei Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.,East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Liu
- East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | - Enkhbat Bolor-Erdene
- Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qinchuan Li
- East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | - Yunqing Mei
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.,Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lei Zhou
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| |
Collapse
|
16
|
Li Y, Zhu X, Yang M, Wang Y, Li J, Fang J, Guo W, Ma S, Guan F. YAP/TEAD4-induced KIF4A contributes to the progression and worse prognosis of esophageal squamous cell carcinoma. Mol Carcinog 2021; 60:440-454. [PMID: 34003522 DOI: 10.1002/mc.23303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Aberrant expression of kinesin family member 4A (KIF4A), which is associated with tumor progression, has been reported in several types of cancer. However, its expression and the underlying molecular mechanisms regulating the transcription of KIF4A in esophageal squamous cell carcinoma (ESCC) remain largely unclear. Here, we found that high KIF4A expression was positively correlated with tumor stage and poor prognosis in ESCC patients. KIF4A silencing significantly inhibited the growth and migration of ESCC cells, arrested cell cycle, and induced apoptosis. Interestingly, KIF4A expression was positively related to the expression of YAP in human ESCC tissues. YAP knockdown or disrupting YAP/TEAD4 interaction by verteporfin repressed KIF4A expression. Also, KIF4A knockdown significantly inhibited the cell growth induced by YAP overexpression. Mechanistically, YAP activated KIF4A transcriptional expression by TEAD4-mediated direct binding to KIF4A promoter. Finally, KIF4A knockdown and verteporfin treatment synergistically inhibited tumor growth in xenograft models. Together, these results indicated that KIF4A, a novel target gene of YAP/TEAD4, may be a progression and prognostic biomarker of ESCC. Targeting drugs for KIF4A combined with YAP inhibitor may be a novel therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences , East China Normal University, Shanghai, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yingying Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated to Henan University of Science and Technology, Xuchang, China
| | - Jiarui Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
18
|
Gui T, Yao C, Jia B, Shen K. Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods. PLoS One 2021; 16:e0253136. [PMID: 34143800 PMCID: PMC8213194 DOI: 10.1371/journal.pone.0253136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhe Yao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Sabnis RW. Novel Amide Compounds as KIF18A Inhibitors for Treating Cancer. ACS Med Chem Lett 2021; 12:690-691. [PMID: 34055211 DOI: 10.1021/acsmedchemlett.1c00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
20
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
21
|
Lin W, Zou H, Mo J, Jin C, Jiang H, Yu C, Jiang Z, Yang Y, He B, Wang K. Micro1278 Leads to Tumor Growth Arrest, Enhanced Sensitivity to Oxaliplatin and Vitamin D and Inhibits Metastasis via KIF5B, CYP24A1, and BTG2, Respectively. Front Oncol 2021; 11:637878. [PMID: 33791222 PMCID: PMC8006274 DOI: 10.3389/fonc.2021.637878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the most common cancer type in the digestive tract. Chemotherapy drugs, such as oxaliplatin, are frequently administered to CRC patients diagnosed with advanced or metastatic disease. A better understanding of the molecular mechanism underlying CRC tumorigenesis and the identification of optimal biomarkers for assessing chemotherapy sensitivity are essential for the treatment of CRC. Various microRNAs, constituting class of non-coding RNAs with 20-22 nucleotides, have served as oncogenes or tumor suppressors in CRC. We analyzed miR-1278 expression in clinical samples by qRT-PCR. We then explored the role of miR-1278 in CRC growth in vitro and in vivo as well as sensitivity to oxaliplatin via RNA-seq and gain- and loss-of-function assays. We found that miR-1278 was downregulated in CRC samples, correlating with advanced clinical stage, and overexpression of miR-1278 led to tumor growth arrest and increased sensitivity to oxaliplatin via enhanced apoptosis and DNA damage. Suppression of KIF5B by miR-1278 through direct binding to its 3′UTR was the mechanism for the miR-1278-mediated effects in CRC, miR-1278 inhibits metastasis of CRC through upregulation of BTG2. Additionally, we also found that the expression of CYP24A1, the main enzyme determining the biological half-life of calcitriol, was significantly inhibited by miR-1278, according to data from clinical, RNA-seq and functional assays, which allowed miR-1278 to sensitize CRC cells to vitamin D. In summary, our data demonstrated that miR-1278 may serve as a potential tumor suppressor gene and biomarker for determining sensitivity to oxaliplatin and vitamin D in CRC.
Collapse
Affiliation(s)
- Weidong Lin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Chengyang Yu
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Zufu Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Yusha Yang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Bin He
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Taizhou Key Laboratory of General Surgery, Taizhou, China
| |
Collapse
|
22
|
Muniesh MS, Barmaver SN, Huang HY, Bayansan O, Wagner OI. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell 2020; 31:2932-2947. [PMID: 33147118 PMCID: PMC7927192 DOI: 10.1091/mbc.e19-10-0591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNC-104 is the Caenorhabditis elegans homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in C. elegans known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD–2-mediated motor activation. Indeed, coimmunoprecipitation assays revealed increased interaction between UNC-104 and SYD-2 in ptp-3 knockout worms. Intramolecular FRET analysis in living nematodes demonstrates that SYD-2 largely exists in an open conformation state in ptp-3 mutants. These assays also revealed that nonphosphorylatable SYD-2 (Y741F) exists predominately in folded conformations, while phosphomimicking SYD-2 (Y741E) primarily exists in open conformations. Increased UNC-104 motor clustering was observed along axons likely as a result of elevated SYD-2 scaffolding function in ptp-3 mutants. Also, both motor velocities as well as cargo transport speeds were visibly increased in neurons of ptp-3 mutants. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 to regulate its intramolecular folding.
Collapse
Affiliation(s)
| | - Syed Nooruzuha Barmaver
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Yi Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Oliver Ingvar Wagner
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
23
|
Sabnis RW. Novel KIF18A Inhibitors for Treating Cancer. ACS Med Chem Lett 2020; 11:2368-2369. [PMID: 33335656 DOI: 10.1021/acsmedchemlett.0c00592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
24
|
Sabnis RW. Novel KIF18A Inhibitors for Treating Cancer. ACS Med Chem Lett 2020; 11:2079-2080. [PMID: 33214814 DOI: 10.1021/acsmedchemlett.0c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
25
|
Li C, Chen J, Su Z. KIF4A is a promising prognostic marker and correlates with immune infiltration in clear cell renal cell carcinoma. Transl Cancer Res 2020; 9:7165-7173. [PMID: 35117320 PMCID: PMC8798853 DOI: 10.21037/tcr-20-1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
Background Kinesin family member 4A (KIF4A) belongs to the kinesin family. It has been found to promote the proliferation and invasion of tumor cells and correlates with the poor prognosis of different types of human cancers. However, the expression and prognostic value of KIF4A in clear cell renal cell carcinoma (ccRCC) and its correlation with tumor-infiltrating immune cells are currently unclear. Methods Here, we analyzed the expression data of KIF4A in different types of tumors on the TIMER database. The Kaplan-Meier curve was utilized to reveal the correlation between KIF4A expression and the clinical prognosis of ccRCC patients. UALCAN database was utilized to evaluate the relationship between KIF4A expression and the clinicopathological features of ccRCC patients. In addition, the correlation between KIF4A expression and the abundance of immune infiltrates, as well as gene markers of tumor-infiltrating immune cells was determined on the TIMER database. Results Various types of malignant tumors, including kidney renal clear cell carcinoma (KIRC), show high levels of KIF4A expression. The high expression of KIF4A was correlated with the worse prognosis, advanced clinical stage, poorer differentiation, and higher levels of immune infiltration in KIRC. Conclusions In summary, KIF4A is a promising prognostic marker and correlates with immune infiltration in clear cell renal cell carcinoma. However, further molecular and cellular experimental evidence is required to validate these conclusions.
Collapse
Affiliation(s)
- Canxuan Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijian Su
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Paul D, Chipurupalli S, Justin A, Raja K, Mohankumar SK. Caenorhabditis elegans as a possible model to screen anti-Alzheimer's therapeutics. J Pharmacol Toxicol Methods 2020; 106:106932. [PMID: 33091537 DOI: 10.1016/j.vascn.2020.106932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is regarded as one of the significant health burdens, as the prevalence is raising worldwide and gradually reaching to epidemic proportions. Consequently, a number of scientific investigations have been initiated to derive therapeutics to combat AD with a concurrent advancement in pharmacological methods and experimental models. Whilst, the available experimental pharmacological approaches both in vivo and in vitro led to the development of AD therapeutics, the precise manner by which experimental models mimic either one or more biomarkers of human pathology of AD is gaining scientific attentions. Caenorhabditis elegans (C. elegans) has been regarded as an emerging model for various reasons, including its high similarities with the biomarkers of human AD. Our review supports the versatile nature of C. elegans and collates that it is a well-suited model to elucidate various molecular mechanisms by which AD therapeutics elicit their pharmacological effects. It is apparent that C. elegans is capable of establishing the pathological processes that links the endoplasmic reticulum and mitochondria dysfunctions in AD, exploring novel molecular cascades of AD pathogenesis and underpinning causal and consequential changes in the associated proteins and genes. In summary, C. elegans is a unique and feasible model for the screening of anti-Alzheimer's therapeutics and has the potential for further scientific exploration.
Collapse
Affiliation(s)
- Deepraj Paul
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute of Research, Madison, WI, USA
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India.
| |
Collapse
|
27
|
Yang GH, Ren ZX, Yang X, Zhang YG. KIF4A Promotes Clear Cell Renal Cell Carcinoma (ccRCC) Proliferation in vitro and in vivo. Onco Targets Ther 2020; 13:2667-2676. [PMID: 32280241 PMCID: PMC7127824 DOI: 10.2147/ott.s240734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To evaluate the expression in human clear cell renal cell carcinoma (ccRCC) tissues and explore the effects of kinesin family member 4A (KIF4A) on ccRCC progression. METHODS GEPIA was used to evaluate the mRNA levels of KIF4A in human ccRCC tissues from TCGA database, and Immunohistochemistry (IHC) assays were performed to assess its expression in human ccRCC tissues collected in our hospital. The clinical-pathological analysis was performed to explore the correlation with KIF4A expression. The effects of KIF4A on ccRCC cell proliferation were detected through colony formation and MTT assays. Finally, the effects of KIF4A on tumor growth were measured using a mice model. RESULTS Bioinformation results showed the expression of KIF4A mRNA was upregulated in ccRCC tissues and high expression of KIF4A was related with poor prognosis in ccRCC patients. We also found a high expression of KIF4A in human ccRCC tissues collected in our hospital. We also found its expression level was correlated with clinical characteristics, including T stage (P=0.035*) and lymphatic metastasis (P=0.028*). We further confirmed that knockdown of KIF4A suppressed cell proliferation in HTB-47 and CRL-1932 cells. Furthermore, KIF4A contributes to tumor growth of ccRCC cells in mice. CONCLUSION We found the abnormal high expression of KIF4A in human ccRCC tissues and demonstrated that KIF4A could serve as a tumor induction gene.
Collapse
Affiliation(s)
- Guang-Hua Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province030032, People’s Republic of China
| | - Zhi-Xing Ren
- Education and Research Center, Taiyuan Radio and Television University, Taiyuan City, Shanxi Province030024, People’s Republic of China
| | - Xiong Yang
- Department of Urolith Center, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin300211, People’s Republic of China
| | - Yan-Gang Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province030032, People’s Republic of China
| |
Collapse
|
28
|
Li G, Xie ZK, Zhu DS, Guo T, Cai QL, Wang Y. KIF20B promotes the progression of clear cell renal cell carcinoma by stimulating cell proliferation. J Cell Physiol 2019; 234:16517-16525. [PMID: 30805928 DOI: 10.1002/jcp.28322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Renal cell carcinoma (RCC) is a common urinary system cancer with high morbidity and mortality rate. Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common type of RCC. More and effective therapeutic targets are badly needed for the treatment of ccRCC. Kinesin family protein (KIF)20B, also named M-phase phosphoprotein 1, was reported as a microtubule-associated, plus-end-directed kinesin. KIF20B was involved in multiple cellular processes such as cytokinesis. Multiple studies indicated the oncogenic role for KIF20B in several types of tumors, including breast cancer and bladder cancer. However, the possible role of KIF20B in the progression of renal carcinoma is still unknown. Herein, our study demonstrated that KIF20B was relatively highly expressed in ccRCC tissues. In addition, KIF20B was inversely related to the clinical features including tumor size and T stage. We further found that inhibition of the KIF20B expression by a specific short hairpin RNA obviously reduces proliferation of ccRCC cells both in vitro and in vivo. Our study reveals the involvement of KIF20B in ccRCC progression. Generally, KIF20B is a promising novel therapeutic for the treatment of clear cell RCC.
Collapse
Affiliation(s)
- Gang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zun-Ke Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dong-Sheng Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qi-Liang Cai
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Trevino V. Integrative genomic analysis identifies associations of molecular alterations to APOBEC and BRCA1/2 mutational signatures in breast cancer. Mol Genet Genomic Med 2019; 7:e810. [PMID: 31294536 PMCID: PMC6687632 DOI: 10.1002/mgg3.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The observed mutations in cancer are the result of ~30 mutational processes, which stamp particular mutational signatures (MS). Nevertheless, it is still not clear which genomic alterations correlate to several MS. Here, a method to analyze associations of genomic data with MS is presented and applied to The Cancer Genome Atlas breast cancer data revealing promising associations. METHODS The MS were discretized into clusters whose extremes were statistically associated with mutations, copy number, and gene expression data. RESULTS Known associations for apolipoprotein B editing complex (APOBEC) and for BRCA1 and BRCA2 support the proposal. For BRCA1/2, mutations in ARAP3, three focal deletions, and one amplification were detected. Around 50 mutated genes for the two APOBEC signatures were identified including three kinesins (KIF13A, KIF1B, KIF4A), three ubiquitins (USP45, UBR4, UBR1), and two demethylases (KDM5B, KDM5C) among other genes also connected to DNA damage pathways. The results suggest novel roles for other genes currently not involved in DNA repair. The altered expression program was very high for the BRCA1/2 signature, high for APOBEC signature 13 clearly associated to immune response, and low for APOBEC signature 2. The remaining signatures show scarce associations. CONCLUSION Specific genetic alterations can be associated with particular MS.
Collapse
Affiliation(s)
- Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, México
| |
Collapse
|