1
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
3
|
Woodruff ER, Bailey CA, To F, Manda V, Maltzahn JK, Sullivan TM, Boorgula MP, Recouvreux MS, Vianzon R, Conrad B, Gavin KM, Jordan KR, Klemm DJ, Orsulic S, Bitler BG, Watson ZL. Ablation of hematopoietic stem cell derived adipocytes reduces tumor burden in syngeneic mouse models of high-grade serous carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613924. [PMID: 39345441 PMCID: PMC11429979 DOI: 10.1101/2024.09.19.613924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In this study we examined the influence of hematopoietic stem cell-derived adipocytes (HSCDAs) on the proliferation and metastasis of high-grade serous carcinoma (HGSC) - the most common type of ovarian cancer. HSCDAs are a subtype of adipocytes that differentiate from myeloid precursors that traffic from bone marrow to adipose tissue and accumulate therein. These are distinct from conventional mesenchymal adipocytes (CMAs), which are derived from mesenchymal precursors. We hypothesized that HSCDAs promote HGSC progression and establish a pro-tumoral niche within peritoneal adipose tissues such as the omentum. Primary human white adipose tissue samples were obtained via biopsy and then sorted into myeloid and mesenchymal populations through flow cytometry. These adipose precursors were then differentiated in vitro into mature HSCDAs and CMAs, respectively. Transcriptomic analysis showed that HSCDAs have a distinct transcriptional profile from CMAs, including downregulation of cell cycle and upregulation of multiple metabolic and adipogenic pathways. Using ELISA, we found that HSCDAs secreted greater amounts of inflammatory cytokines IL-6 and IL-8 than CMAs. Next, we incubated HGSC cells in conditioned media from HSCDAs and CMAs and performed proliferation and protein expression profiling. HGSC cells in HSCDA media, compared to those in CMA media, had elevated expression of protein markers related to epithelial to mesenchymal plasticity, including fibronectin, as well as increased serine phosphorylation of pro-survival AKT1/2. Conversely, HGSC cells in HSCDA media exhibited comparably downregulated expression of tumor suppressors including the Wnt regulator GSK3β. Depending on the cell line and adipose donor, HGSC cells also showed altered growth rates in conditioned media. We next investigated the role of HSCDAs in HGSC progression and metastasis in vivo . We generated immunocompetent mice that were either HSCDA Proficient (can make both adipocyte subtypes) or Deficient (can only make CMAs). Using these models, we conducted two independent tumor studies using the ID8 ( Tp53-/- , Brca2-/- ) and SO ( Tp53-/- , Brca1/2 wild-type, Hras and Myc amplified) syngeneic models. Overall tumor burden was lower in HSCDA Deficient mice in both models. In the ID8 model, omental tumors from HSCDA Deficient mice showed reduced proliferation (Ki67) and apoptosis (cleaved caspase 3) relative to those from Proficient mice. Transcriptionally, omental ID8 tumors from HSCDA Deficient downregulated oxidative phosphorylation, adipogenesis, and fatty acid metabolism relative to tumors from HSCDA Proficient mice. These pathways were enriched in HSCDA cells in vitro , suggesting that ablation of HSCDAs had a significant influence on the tumor metabolic environment. Reduced inflammatory pathways in ID8 tumors from HSCDA Deficient mice were also observed leading us to interrogate immune cell infiltration into omental tumors. Compared to HSCDA Proficient mice, tumors from HSCDA Deficient mice showed reduced densities of dendritic cells (DC) and natural killer (NK) cells, as well as fewer DCs, NKs, and B-cells in proximity to tumor cells, as determined by spatial analysis. Overall, our data suggest that HSCDAs promote HGSC survival and plasticity while downregulating expression of tumor suppressors and altering the peritoneal immune and metabolic environment to promote HGSC progression.
Collapse
|
4
|
Ma Q, Zheng L, Cheng H, Li X, Liu Z, Gong P. PDCD4-induced oxidative stress through FGR/NF-κB axis in rectal cancer radiotherapy-induced AKI. Int Immunopharmacol 2024; 132:111779. [PMID: 38581987 DOI: 10.1016/j.intimp.2024.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to investigate the molecular mechanism of the effect of PDCD4 on radiotherapy-induced acute kidney injury (AKI) in rectal cancer through the regulation of FGR/NF-κB signaling. Differentially expressed genes were identified using Gene Expression Omnibus (GEO) datasets (GSE90627 for rectal cancer and GSE145085 for AKI) and R software. The human renal tubular epithelial cell line, HK-2, was used to establish an in vitro model of radiotherapy-induced AKI. RT-qPCR and western blotting were used to detect gene and protein expression levels, respectively. Cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. The malondialdehyde and superoxide dismutase levels in the cell culture supernatants were determined. Additionally, an in vivo AKI model was established using BALB/c mice, and kidney tissue morphology, expression of the renal injury molecule KIM-1, apoptosis of renal tubular cells, and TAS and TOS in serum were evaluated. Bioinformatics analysis revealed the upregulated expression of PDCD4 in AKI. In vitro experiments demonstrated that PDCD4 induced apoptosis in renal tubular cells by promoting FGR expression, which activated the NF-κB signaling pathway and triggered an oxidative stress response. In vivo animal experiments confirmed that PDCD4 promoted oxidative stress response and radiotherapy-induced AKI through the activation of the FGR/NF-κB signaling pathway. Silencing PDCD4 attenuated radiotherapy-induced AKI. Our findings suggest that PDCD4 may induce radiotherapy-induced AKI in rectal cancer by promoting FGR expression, activating the NF-κB signaling pathway, and triggering an oxidative stress response.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Lu Zheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Hao Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China
| | - Xiaoyang Li
- The Second Clinical Medical College of Southern Medical University, Guangzhou 510515, PR China
| | - Zhining Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China.
| | - Peng Gong
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, PR China.
| |
Collapse
|
5
|
Ahmed AA, Monir M, Sabry D, Mostafa A. In vitro study to evaluate the effect of granulocyte colony stimulating factor on colorectal adenocarcinoma and on mesenchymal stem cells trans differentiation into cancer stem cells by cancer cells derived exosomes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
Colorectal cancer (CRC) is a common and lethal malignancies with poor prognosis. CRC cells release extracellular vesicles called exosomes to facilitate tumor progression by passing bioactive molecules such as proteins and nucleic acids between cells of the tumor and their microenvironment. Granulocyte colony stimulating factor (G-CSF) is a hematopoietic growth factor which mainly affects the lineage of neutrophil and exerts direct anti-tumor effects on various tumor types. The purpose of our study is to investigate the effect of G-CSF on CRC cells and to evaluate its capability to attenuate the potentiality of CRC cells derived exosomes to induce bone marrow-derived mesenchymal stem cells (BM-MSCs) malignant transformation into cancer stem cells (CSCs).
Results
The level of both lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1) (p = 0.014) & β-catenin (p = 0.01) was significantly decreased, whereas programmed cell death 4 (PDCD4) (p = 0.018) was increased in CRC exosomes pre-treated with G-CSF compared to untreated CRC exosomes. Additionally, there was a significant decrease in the cell proliferation in CRC cells pre-treated with G-CSF compared to untreated CRC cells (p = 0.008). Flow cytometric analysis of BM-MSCs showed that G-CSF could attenuate their transformation into CSCs.
Conclusion
G-CSF can be a promising therapeutic agent for CRC treatment.
Collapse
|
6
|
Yang WH, George AP, Wang CM, Yang RH, Duncan AM, Patel D, Neil ZD, Yang WH. Tumor Suppressor p53 Down-Regulates Programmed Cell Death Protein 4 (PDCD4) Expression. Curr Oncol 2023; 30:1614-1625. [PMID: 36826085 PMCID: PMC9955764 DOI: 10.3390/curroncol30020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hsiung Yang
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
7
|
Jiang NN, Gar-Lee Yue G, Li P, Ye YS, Gomes AJ, Hin-Fai Kwok F, Kin-Ming Lee J, Gao S, Lau CBS, Xu G. Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem 2022; 239:114532. [PMID: 35749988 DOI: 10.1016/j.ejmech.2022.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Dearomatized isoprenylated acylphloroglucinols (DIAPs) are specific natural products mainly distributed in the plants of genus Hypericum. In this study, guided by HPLC-UV screening, 46 DIAPs (approximately 70% of all DIAPs) including 20 new ones and an unprecedented architecture, were discovered from the roots of Hypericum henryi, which were elucidated by comprehensive spectroscopic, X-ray crystallography, and ECD methods. Compounds 1-7, 39, and 41-42 exhibited remarkable cytotoxicities (IC50 = 0.84-5.63 μM) in human colon cancer HCT116 cells, in which 2 and 6 possessed selective cytotoxicities towards colon cancer cells. The preliminary structure-activity relationships of these tested compounds were discussed. In addition, mechanistic investigations demonstrated that 2 and 6 could significantly suppress the expressions of NFκB, FAT1, and promoted novel tumor suppressor gene PDCD4 in HCT116 cells. Furthermore, in HCT116 colon xenograft-bearing mouse model, treatments with 2 and 6 reduced the growth of xenograft tumors in dose-dependent manner. Expressions of FAT1 in tumors were also decreased in mice treated with 2 and 6, suggesting their anti-tumor effects were via FAT1 signaling pathway. In conclusion, this is the first report on the mechanistic and in vivo studies of DIAP, indicating that these metabolites can be considered as a new type of anti-colon cancer lead agents for further drug development.
Collapse
Affiliation(s)
- Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
8
|
Ng L, Li HS, Man ATK, Chow AKM, Foo DCC, Lo OSH, Pang RWC, Law WL. High Expression of a Cancer Stemness-Related Gene, Chromobox 8 (CBX8), in Normal Tissue Adjacent to the Tumor (NAT) Is Associated with Poor Prognosis of Colorectal Cancer Patients. Cells 2022; 11:cells11111852. [PMID: 35681547 PMCID: PMC9180723 DOI: 10.3390/cells11111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Several studies have demonstrated that the molecular profile of normal tissue adjacent to the tumor (NAT) is prognostic for recurrence in patients with different cancers. This study investigated the clinical significance of CBX8 gene expression, a cancer stemness-related gene, in tumor and NAT tissue of colorectal cancer (CRC) patients. Methods: The gene level of CBX8 in paired CRC and NAT specimens from 95 patients was determined by quantitative PCR. CBX8 protein level in CRC and NAT specimens from 66 patients was determined by immunohistochemistry. CBX8 gene and protein levels were correlated with the patients’ clinicopathological parameters and circulatory immune cell profiles. The association between CBX8 and pluripotency-associated genes was analyzed using the TCGA database. Results: NAT CBX8 gene level positively correlated with TNM stage, tumor invasion, lymph node metastasis and distant metastasis, indicating its association with tumor progression and metastasis. There was no correlation between NAT CBX8 protein level and clinicopathological parameters. Moreover, a high level of CBX8 gene and protein in NAT both correlated with poor DFS and OS. There was an inverse correlation between CBX8 gene level and post-operative platelet counts and platelet to lymphocyte level, suggesting its association with systematic inflammation. Finally, TCGA analysis showed that CBX8 level was correlated with a couple of pluripotency-associated genes, supporting its association with cancer stemness. Conclusions: High NAT CBX8 is a poor prognostic factor for tumor progression and survival in CRC patients.
Collapse
Affiliation(s)
- Lui Ng
- Correspondence: (L.N.); (W.-L.L.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen J, Xu Y, Wu P, Chen X, Weng W, Li D. Transcription Factor FOXO3a Overexpression Inhibits the Progression of Neuroblastoma by Regulating the miR-21/SPRY2/ERK Axis. World Neurosurg 2022; 164:e99-e112. [DOI: 10.1016/j.wneu.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
10
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
11
|
Lai CY, Yeh KY, Liu BF, Chang TM, Chang CH, Liao YF, Liu YW, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in Colitis-Associated Carcinoma and Colorectal Cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α Signaling Pathways in Zebrafish. Cancers (Basel) 2021; 13:5565. [PMID: 34771727 PMCID: PMC8583575 DOI: 10.3390/cancers13215565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Patients with inflammatory bowel disease (IBD) have a high risk of developing CRC. Inflammatory cytokines are regulated by complex gene networks and regulatory RNAs, especially microRNAs. MicroRNA-21 (miR-21) is amongst the most frequently upregulated microRNAs in inflammatory responses and cancer development. miR-21 has become a target for genetic and pharmacological regulation in various diseases. However, the association between inflammation and tumorigenesis in the gut is largely unknown. Hence, in this study, we generated a zebrafish model (ImiR-21) with inducible overexpression of miR-21 in the intestine. The results demonstrate that miR-21 can induce CRC or colitis-associated cancer (CAC) in ImiR-21 through the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling network. miR-21 activated the PI3K/AKT and NF-κB signaling pathways, leading to initial inflammation; thereafter, miR-21 and TNF-α repressed PDCD4 and its tumor suppression activity. Eventually, active STAT3 stimulated a strong inflammatory response and activated the invasion/metastasis process of tumor cells. Hence, our findings indicate that miR-21 is critical for the development of CRC/CAC via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Chung Memorial Hospital, Keelung 204, Taiwan;
| | - Bi-Feng Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Tzu-Ming Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
| | - Chuan-Hsun Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
- Division of General Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yung-Feng Liao
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd., Taipei 11529, Taiwan;
| | - Yi-Wen Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| |
Collapse
|
12
|
Chen Q, Lu H, Duan C, Zhu X, Zhang Y, Li M, Zhang D. PDCD4 Simultaneously Promotes Microglia Activation via PDCD4-MAPK-NF-κB Positive Loop and Facilitates Neuron Apoptosis During Neuroinflammation. Inflammation 2021; 45:234-252. [PMID: 34613548 DOI: 10.1007/s10753-021-01541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and neuron injury are common features of the central nervous system (CNS) diseases. It is of great significance to identify their shared key regulatory molecules and thus explore the potential therapeutic targets. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases, but its expression and biological function during CNS neuroinflammation remain unclear. In the present study, utilizing the lipopolysaccharide (LPS)-induced neuroinflammation model in mice, we reported an elevated expression of PDCD4 both in injured neurons and activated microglia of the inflamed brain. A similar change in PDCD4 expression was observed in vitro in the microglial activation model. Silencing PDCD4 by shRNA significantly inhibited the phosphorylation of MAPKs (p38, ERK, and JNK), prevented the phosphorylation and nuclear translocation of NF-κB p65, and thus attenuated the LPS-induced microglial inflammatory activation. Interestingly, LPS also required the MAPK/NF-κB signaling activation to boost PDCD4 expression in microglia, indicating the presence of a positive loop. Moreover, a persistent elevation of PDCD4 expression was detected in the H2O2-induced neuronal oxidative damage model. Knocking down PDCD4 significantly inhibited the expression of pro-apoptotic proteins BAX and Cleaved-PARP, suggesting the proapoptotic activity of PDCD4 in neurons. Taken together, our data indicated that PDCD4 may serve as a hub regulatory molecule that simultaneously promotes the microglial inflammatory activation and the oxidative stress-induced neuronal apoptosis within CNS. The microglial PDCD4-MAPK-NF-κB positive feedback loop may act as pivotal signaling for neuroinflammation which subsequently exaggerates neuronal injury, and thus may become a potential therapeutic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Quan Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China. .,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China. .,Rehabilitation Medicine Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China.
| |
Collapse
|
13
|
Kim JY, Lee H, Kim EK, Lee WM, Hong YO, Hong SA. Low PDCD4 Expression Is Associated With Poor Prognosis of Colorectal Carcinoma. Appl Immunohistochem Mol Morphol 2021; 29:685-692. [PMID: 34029220 DOI: 10.1097/pai.0000000000000948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Programmed cell death 4 (PDCD4) is a tumor suppressor gene that inhibits tumor progression, invasion, and metastasis. Decreased PDCD4 expression is associated with poor prognosis in various types of cancers. We evaluated PDCD4 expression and its clinicopathologic correlation, including patient survival, in 289 surgically resected colorectal cancers. Low nuclear PDCD4 expression was identified in 177 (61.2%) cases and was associated with large tumor size, high pT classification, and the presence of lymphovascular and perineural invasion. The 5-year survival rate of patients with low nuclear PDCD4 expression was significantly lower than that of patients with high expression (72.2% vs. 93.3%, P<0.001). American Joint Committee on Cancer stage II and III colorectal cancer patients with low nuclear PDCD4 expression (76.9% and 67.2%, respectively) showed significantly worse overall survival than those with high expression (100% and 92.9%, P=0.002 and 0.032, respectively). Low nuclear PDCD4 expression was an independent poor prognostic factor in colorectal cancer patients (hazard ratio=3.556; 95% confidence interval, 1.739-7.271; P=0.001). Our study suggests that low PDCD4 expression is associated with aggressive behavior and can be used as a prognostic indicator of colorectal cancer patients.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
- Department of Pathology, Uijeongbu Eulji University Medical Center, Eulji University, Gyeonggi-do
| | - Hojung Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Eun Kyung Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Won Mi Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Young Ok Hong
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Korea
| |
Collapse
|
14
|
Egusquiza-Alvarez CA, Castañeda-Patlán MC, Albarran-Gutierrez S, Gonzalez-Aguilar H, Moreno-Londoño AP, Maldonado V, Melendez-Zajgla J, Robles-Flores M. Overexpression of Multifunctional Protein p32 Promotes a Malignant Phenotype in Colorectal Cancer Cells. Front Oncol 2021; 11:642940. [PMID: 34136383 PMCID: PMC8201776 DOI: 10.3389/fonc.2021.642940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
p32 is a multifunctional and multicompartmental protein that has been found upregulated in numerous adenocarcinomas, including colorectal malignancy. High levels of p32 expression have been correlated with poor prognosis in colorectal cancer. However, the functions performed by p32 in colorectal cancer have not been characterized. Here we show that p32 is overexpressed in colorectal cancer cell lines compared to non-malignant colon cells. Colon cancer cells also display higher nuclear levels of p32 than nuclear levels found in non-malignant cells. Moreover, we demonstrate that p32 regulates the expression levels of genes tightly related to malignant phenotypes such as HAS-2 and PDCD4. Remarkably, we demonstrate that knockdown of p32 negatively affects Akt/mTOR signaling activation, inhibits the migration ability of colon malignant cells, and sensitizes them to cell death induced by oxidative stress and chemotherapeutic agents, but not to cell death induced by nutritional stress. In addition, knockdown of p32 significantly decreased clonogenic capacity and in vivo tumorigenesis in a xenograft mice model. Altogether, our results demonstrate that p32 is an important promoter of malignant phenotype in colorectal cancer cells, suggesting that it could be used as a therapeutic target in colorectal cancer treatment.
Collapse
Affiliation(s)
| | - M Cristina Castañeda-Patlán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sara Albarran-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Héctor Gonzalez-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angela P Moreno-Londoño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetics and Functional Genomics Laboratories, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Epigenetics and Functional Genomics Laboratories, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
15
|
Zhou H, Shi P, Jia X, Xue Q. Long non-coding RNA LINC01018 inhibits the progression of acute myeloid leukemia by targeting miR-499a-5p to regulate PDCD4. Oncol Lett 2021; 22:541. [PMID: 34079594 PMCID: PMC8157334 DOI: 10.3892/ol.2021.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease with a very high mortality rate. In recent years, an increasing number of studies have proven that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) may serve as useful biomarkers in various cancer types. However, the mechanism of LINC01018 and miR-499a-5p in AML requires further investigation. The mRNA expression of LINC01018, miR-499a-5p and PDCD4 in AML tissues and cells was detected using reverse transcription-quantitative polymerase chain reaction. Cell proliferation was measured using Cell Counting kit-8 and EdU assays. Cell apoptosis was monitored via a TUNEL staining assay. Protein expression of PDCD4, Bax and Bcl-2 was measured using western blot analysis. The interaction between PDCD4 and LINC01018 or miR-499a-5p was verified by RNA pull-down, RIP and dual-luciferase reporter assays. LINC01018 and PDCD4 were downregulated in AML, while miR-499a-5p was upregulated. LINC01018-overexpression suppressed AML cell proliferation and induced AML cell apoptosis, while miR-499a-5p transfection reversed these effects. LINC01018 acted as a sponge of miR-499a-5p, and PDCD4 was demonstrated to be targeted by miR-499a-5p. Knockdown of miR-499a-5p suppressed AML cell proliferation and promoted AML cell apoptosis, but silencing PDCD4 abolished this effect. LINC01018 inhibited AML cell growth by modulating PDCD4 through suppression of miR-499a-5p, providing a feasible theoretical basis for the treatment of AML.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaofeng Jia
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Qianfu Xue
- Department of Hematology, Yong Chuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
16
|
Weidle UH, Brinkmann U, Auslaender S. microRNAs and Corresponding Targets Involved in Metastasis of Colorectal Cancer in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 17:453-468. [PMID: 32859626 DOI: 10.21873/cgp.20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
The high death toll of colorectal cancer patients is due to metastatic disease which is difficult to treat. The liver is the preferred site of metastasis, followed by the lungs and peritoneum. In order to identify new targets and new modalities of intervention we surveyed the literature for microRNAs (miRs) which modulate metastasis of colorectal cancer in preclinical in vivo models. We identified 12 up-regulated and 19 down-regulated miRs corresponding to the latter criterium. The vast majority (n=16) of identified miRs are involved in modulation of epithelial-mesenchymal transition (EMT). Other categories of metastasis-related miRs exhibit tumor- and metastasis-suppressing functions, modulation of signaling pathways, transmembrane receptors and a class of miRs, which interfere with targets which do not fit into these categories. Finally, we discuss the principles of miR inhibition and reconstitution of function, prospective clinical evaluation of with miR-related agents in the context of clinical evaluation in metastasis relevant settings.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
17
|
Shi JY, Bi YY, Yu BF, Wang QF, Teng D, Wu DN. Alternative Splicing Events in Tumor Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:583547. [PMID: 33996533 PMCID: PMC8117221 DOI: 10.3389/fonc.2021.583547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.
Collapse
Affiliation(s)
- Jian-Yu Shi
- Department of Proctology, Ping Yi People's Hospital, Linyi, China
| | - Yan-Yan Bi
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Bian-Fang Yu
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Qing-Feng Wang
- Department of Basic Pharmacology, College of Integration of Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Teng
- Artificial Intelligence and Big Data College, HE University, Shenyang, China
| | - Dong-Ning Wu
- Clinical Evaluation Center, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Wang H, Wang DH, Yang X, Sun Y, Yang CS. Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis 2020; 42:557-569. [PMID: 33196831 DOI: 10.1093/carcin/bgaa122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis increases the risk of colorectal cancer; however, the mechanism of the association between colitis and cancer remains largely unknown. To identify colitis-associated cancer promoting factors, we investigated gene expression changes caused by dextran sulfate sodium (DSS)-induced colitis in mice. By analyzing gene expression profiles, we found that IL11 was upregulated in DSS-induced colitis tissue and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP)/DSS-induced colon tumours in mice as well as in human colorectal cancer. By characterizing the activation/phosphorylation of STAT3 (pSTAT3), we found that pSTAT3 was induced transiently in colitis, but maintained at higher levels from hyper-proliferative dysplastic lesions to tumours. Using the IL11 receptor (IL11Rα1) knockout mice, we found that pSTAT3 in the newly regenerated crypt epithelial cells in colitis is abolished in IL11Rα1+/- and -/- mice, suggesting that colitis-induced IL11 activates STAT3 in colon crypt epithelial cells. Moreover, colitis-promoted colon carcinogenesis was significantly reduced in IL11Rα1+/- and -/- mice. To determine the roles of the IL11 in colitis, we found that the inhibition of IL11 signalling by recombinant IL11 antagonist mutein during colitis was sufficient to attenuate colitis-promoted carcinogenesis. Together, our results demonstrated that colitis-induced IL11 plays critical roles in creating cancer promoting microenvironment to facilitate the development of colon cancer from dormant premalignant cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David H Wang
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuhai Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
20
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
21
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
22
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
23
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
24
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 534] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
25
|
Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C, Tang Y, Sun C, Zhang Z, Wang L, Chen H, Chen M, Ju W, He X. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int 2019; 19:198. [PMID: 31384173 PMCID: PMC6664491 DOI: 10.1186/s12935-019-0909-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a pivotal role in hepatocellular carcinoma (HCC) progression and have been confirmed to participate in the carcinogenesis and development of HCC. However, the relationship between miR-497-5p and HCC remains unclear. METHODS Kaplan-Meier curve analysis and the log-rank test were used to investigate the efficacy of miR-497-5p on overall survival (OS) and disease-free survival (DFS) in patients with HCC. According to in vitro experiments, programmed cell death 4 (PDCD4) was a target of miR-497-5p by the dual-luciferase activity assay. The efficacy of PDCD4 on cell proliferation and metastasis in HCC was examined by transwell assays, CCK-8 assays and reverse transcription quantitative PCR (RT-qPCR). Additionally, we conducted a luciferase activity reporter assay to confirm the interaction between lncRNA XIST and miR-49-5p. Then, to evaluate the relationship between lncRNA XIST and miR-497-5p, several mechanistic experiments, including qRT-PCR, Western blotting, transwell assays and tumor xenograft assays, were performed. RESULTS miR-497-5p was upregulated in HCC tissues, and high expression of miR-497-5p resulted in increases in tumor size and tumor number and a higher tumor-node-metastasis (TNM) stage and Edmondson grade in patients with HCC. Silencing miR-497-5p inhibited the proliferation and migration of HCC cells. PDCD4, which was downregulated in HCC tissues, was shown to be a target of miR-497-5p and was negatively correlated with the expression of miR-497-5p. lncRNA XIST was found to act as a miR-497-5p sponge and to regulate the level of PDCD4, which is targeted by miR-497-5p. lncRNA XIST was observed to be downregulated in the HCC tissues and positively correlated with the expression of PDCD4. CONCLUSIONS Our findings reveal that the XIST/miR-497-5p/PDCD4 axis participates in HCC development and that XIST could be used as a biomarker of HCC.
Collapse
Affiliation(s)
- Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080 China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| |
Collapse
|
26
|
Mucke HA. Patent Highlights August-September 2018. Pharm Pat Anal 2019; 8:7-14. [PMID: 30869551 DOI: 10.4155/ppa-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|