1
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Zhang R, Mu C, Chang L, Shen X, Bu Z, Yang M, Fu S, Tang Q, Liu P, Yang X. Whole-Genome Sequencing for Identifying Candidate Genes Related to the Special Phenotypes of the Taihu Dianzi Pigeon. Animals (Basel) 2024; 14:1047. [PMID: 38612286 PMCID: PMC11011069 DOI: 10.3390/ani14071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The Taihu Dianzi pigeon is a breed native to China, and its special piebalding, crest, and polydactyly phenotypes are the result of artificial and natural selection. Here, we analyzed the genetic differences among three kinds of pigeons with different phenotypes at the genomic level. A selective sweep was conducted based on the fixation index (FST) and nucleotide diversity (π) ratio, and the results revealed that MC1R was related to the formation of the distinctive piebalding of the Taihu Dianzi pigeon. Combined with the results of genome-wide association studies, we identified candidate genes associated with the crest (SMYD and STOX2) and polydactyly (SLC52A3 and ANGPT4). The candidate genes identified in this study and their variants may be useful for understanding the genetic mechanism underlying the special phenotypes of the Taihu Dianzi pigeon. This study provides new insights into the genetic factors that may influence the formation of the special piebalding, crest, and polydactyly characteristics in pigeons.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Chunyu Mu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Lingling Chang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Xinyue Shen
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Zhu Bu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Shengyong Fu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Qingping Tang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Xiaoming Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| |
Collapse
|
3
|
Li L, Quan J, Gao C, Liu H, Yu H, Chen H, Xia C, Zhao S. Whole-genome resequencing to unveil genetic characteristics and selection signatures of specific pathogen-free ducks. Poult Sci 2023; 102:102748. [PMID: 37209656 DOI: 10.1016/j.psj.2023.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
Specific pathogen-free ducks are important high-grade laboratory animals, with a key role in research related to poultry biosecurity, production, and breeding. However, the genetic characteristics of experimental duck varieties remain poorly explored. Herein we performed whole-genome resequencing to construct a single nucleotide polymorphism genetic map of the genomes of 3 experimental duck varieties [Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)] to determine their genetic characteristics and identify selection signatures. Subsequent analyses of population structure and genetic diversity revealed that each duck variety formed a monophyletic group, with SM showing richer genetic diversity than JD and SX. Further, on exploring shared selection signatures, we found 2 overlapping genomic regions on chromosome Z of all experimental ducks, which comprised immune response-related genes (IL7R and IL6ST). Moreover, growth and skeletal development (IGF1R and GDF5), meat quality (FoxO1), and stress resistance (HSP90B1 and Gpx8-b) candidate gene loci were identified in strongly selected signatures specific to JD, SM, and SX, respectively. Our results identified the population genetic basis of experimental ducks at the whole-genome level, providing a framework for future molecular investigations of genetic variations and phenotypic changes. We believe that such studies will eventually contribute to the management of experimental animal resources.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China; College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
4
|
Huang J, Wang C, Ouyang J, Tang H, Zheng S, Xiong Y, Gao Y, Wu Y, Wang L, Yan X, Chen H. Identification of Key Candidate Genes for Beak Length Phenotype by Whole-Genome Resequencing in Geese. Front Vet Sci 2022; 9:847481. [PMID: 35372529 PMCID: PMC8964941 DOI: 10.3389/fvets.2022.847481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The domestic goose is an important economic animal in agriculture and its beak, a trait with high heritability, plays an important role in promoting food intake and defending against attacks. In this study, we sequenced 772 420-day-old Xingguo gray geese (XGG) using a low-depth (~1 ×) whole-genome resequencing strategy. We detected 12,490,912 single nucleotide polymorphisms (SNPs) using the standard GATK and imputed with STITCH. We then performed a genome-wide association study on the beak length trait in XGG. The results indicated that 57 SNPs reached genome-wide significance levels for the beak length trait and were assigned to seven genes, including TAPT1, DHX15, CCDC149, LGI2, SEPSECS, ANAPC4, and Slc34a2. The different genotypes of the most significant SNP (top SNP), which was located upstream of LGI2 and explained 7.24% of the phenotypic variation in beak length, showed significant differences in beak length. Priority-based significance analysis concluded that CCDC149, LGI2, and SEPSECS genes in the most significant quantitative trait locus interval were the most plausible positional and functional candidate genes for beak length development in the XGG population. These findings not only enhance our understanding of the genetic mechanism of the beak length phenotype in geese, but also lay the foundation for further studies to facilitate the genetic selection of traits in geese.
Collapse
|
5
|
Deng Y, Hu S, Luo C, Ouyang Q, Li L, Ma J, Lin Z, Chen J, Liu H, Hu J, Chen G, Shu D, Pan Y, Hu B, He H, Qu H, Wang J. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics 2021; 22:487. [PMID: 34193033 PMCID: PMC8244220 DOI: 10.1186/s12864-021-07822-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Chenglong Luo
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Zhenping Lin
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Junpeng Chen
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Jiangsu, 225009, Yangzhou, China
| | - Dingming Shu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Yuxuan Pan
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hao Qu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China.
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China.
| |
Collapse
|
6
|
RNA-sequence reveals differentially expressed genes affecting the crested trait of Wumeng crested chicken. Poult Sci 2021; 100:101357. [PMID: 34329989 PMCID: PMC8335650 DOI: 10.1016/j.psj.2021.101357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Wumeng crested chicken has a cluster of slender feathers on its head, and the underlying skull region exhibits an obvious tumor-like protrusion. This is the typical skull structure of crested chickens. The associated regulatory genes are located on autosomes and are incompletely dominant. This trait is related to brain herniation, but the genetic mechanisms of its formation and development are unclear. In this study, RNA sequencing (RNA-Seq) analysis was conducted on 6 skull tissue samples from 3 Wumeng crested chickens with prominent skull protrusions and 3 without a prominent skull protrusion phenotype. A total of 46,376,934 to 43,729,046 clean reads were obtained, the percentage of uniquely mapped reads compared with the reference genome was between 89.73%-91.00%, and 39,795,458-41,836,502 unique reads were obtained. Among different genomic regions, the highest frequency of sequencing reads occurred in exon regions (85.44-88.28%). Additionally, a total of 423 new transcripts and 26,999 alternative splicings (AS) events were discovered in this sequencing analysis. This study identified 1,089 differentially expressed genes (DEGs), among which 485 were upregulated and 604 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the DEGs were enriched in terms related to signal transduction, cell development, cell differentiation, the lysosome, serine, and threonine metabolism, and the interaction of cytokines with cytokine receptors. Based on the comprehensive analysis of DEGs combined with reported quantitative trait loci (QTLs), the expression of BMP2, EPHA3, EPHB1, HOXC6, SCN2B, BMP7, and HOXC10 was verified by real-time quantitative polymerase chain reaction (qRT-PCR). The qRT-PCR results were consistent with the RNA-Seq results, indicating that these 7 genes may be candidates genes regulating the crested trait.
Collapse
|