1
|
Liu Q, Chen X, Zhang W, Shang W, Cao J, Zhao H, Jian F. The predictive value of miR-29b-2-5p on the prognosis of cervical cancer and its inhibitory effect on cervical cancer progression. Int J Biol Markers 2024; 39:319-327. [PMID: 39636261 DOI: 10.1177/03936155241299429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The poor prognosis of cervical cancer patients leads to an annual increase in mortality, while microRNAs are involved in various cancers, including cervical cancer. This study aimed to investigate the clinical value and possible effect of miR-29b-2-5p on the progression of cervical cancer. METHODS The expression level of miR-29b-2-5p in cervical cancer tissues and cells was analyzed by polymerase chain reaction. The Kaplan-Meier curve was used to evaluate the role of miR-29b-2-5p in cervical cancer prognosis. The independent prognostic factors of cervical cancer were explored by the multivariate Cox regression analysis. The effect of miR-29b-2-5p on the proliferation, migration, and invasion of cervical cancer cells was determined by in vitro cell experiments. RESULTS A significantly downregulated miR-29b-2-5p expression was observed in cervical cancer tumor tissues and cervical cancer cells compared with the adjacent tumor tissues (tissues of the negative surgical margin) and H8 cells, respectively. Higher miR-29b-2-5p expression correlated with a better 5-year progression-free survival of cervical cancer. MiR-29b-2-5p was also associated with the indicators (tumor size, tumor differentiation, FIGO (International Federation of Gynecology and Obstetrics) stage, and invasion depth) of the progression of cervical cancer tumors. And miR-29b-2-5p, along with tumor size, tumor differentiation, FIGO stage, histology type, and invasion depth, were independent prognostic factors for poor cervical cancer prognosis. MiR-29b-2-5p showed a suppressive effect on the proliferation, migration, and invasion of cervical cancer cells. CONCLUSIONS MiR-29b-2-5p was downregulated in cervical cancer tumor tissues and could serve as an independent prognostic factor for cervical cancer. The overexpressed miR-29b-2-5p could be considered a tumor suppressor to inhibit the progression of cervical cancer.
Collapse
Affiliation(s)
- Qinghan Liu
- Department of Internal Medicine, Guangzhou Zengcheng Xintang Hospital, Guangzhou, China
| | - Xi Chen
- Department of Gynecology and Obstetrics, Yiwu Second People's Hospital, Yiwu, China
| | - Wenhui Zhang
- Department of Medical Imaging, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Wei Shang
- Department of Obstetrics and Gynecology, Renqiu People's Hospital, Renqiu, Hebei, China
| | - Jinwei Cao
- Department of Medical Imaging, The Sixth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Huijuan Zhao
- Second Department of Obstetrics and Gynecology, The Sixth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Feng Jian
- Obstetrics Department, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| |
Collapse
|
2
|
Wu D, Huang C, Guan K. Mechanistic and therapeutic perspectives of miRNA-PTEN signaling axis in cancer therapy resistance. Biochem Pharmacol 2024; 226:116406. [PMID: 38969299 DOI: 10.1016/j.bcp.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer, being one of the most lethal illnesses, presents an escalating clinical dilemma on a global scale. Despite significant efforts and advancements in cancer treatment over recent decades, the persistent challenge of resistance to traditional chemotherapeutic agents and/or emerging targeted drugs remains a prominent issue in the field of cancer therapies. Among the frequently inactivated tumor suppressor genes in cancer, phosphatase and Tensin Homolog (PTEN) stands out, and its decreased expression may contribute to the emergence of therapeutic resistance. MicroRNAs (miRNAs), characterized by their short length of 22 nucleotides, exert regulatory control over target mRNA expression by binding to complementary sequences. Recent findings indicate that microRNAs play varied regulatory roles, encompassing promotion, suppression, and dual functions on PTEN, and their aberration is implicated in heightened resistance to anticancer therapies. Significantly, recent research has revealed that competitive endogenous RNAs (ceRNAs) play a pivotal role in influencing PTEN expression, and the regulatory network involving circRNA/lncRNA-miRNA-PTEN is intricately linked to resistance in various cancer types to anticancer therapies. Finally, our findings showcase that diverse approaches, such as herbal medicine, small molecule inhibitors, low-intensity ultrasound, and engineered exosomes, can effectively overcome drug resistance in cancer by modulating the miRNA-PTEN axis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Wang Y, Yu Z, Cheng M, Hu E, Yan Q, Zheng F, Guo X, Zhang W, Li H, Li Z, Zhu W, Wu Y, Tang T, Li T. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118126. [PMID: 38556140 DOI: 10.1016/j.jep.2024.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, PR China
| | - Zhilin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wenxin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China.
| |
Collapse
|
4
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Chang Y, Li S, Wang L, Wang K, Li J, Li X, Jian F, Wang R, Zhang S, Zhang L. Micro-RNA expression profile of BALB/c mouse glandular stomach in the early phase of Cryptosporidium muris infection. Exp Parasitol 2023; 253:108603. [PMID: 37633513 DOI: 10.1016/j.exppara.2023.108603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Cryptosporidiosis is a zoonotic disease in humans and animals that is caused by infection with the oocysts of Cryptosporidium. MicroRNAs (miRNAs) are important players in regulating the innate immune response against parasitic infection. Public miRNAs data for studying pathogenic mechanisms of cryptosporidiosis, particularly in natural hosts, are scarce. Here, we compared miRNA profiles of the glandular stomach of C. muris-infected and uninfected BALB/c mice using microarray sequencing. A total of 10 miRNAs (including 3 upregulated and 7 downregulated miRNAs) with significant differential expression (|FC| ≥ 2 and P value < 0.05) were identified in the glandular stomach of BALB/c mice 8 h after infection with C. muris. MiRWalk and miRDB online bioinformatics tools were used to predict the target genes of differentially expressed miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to annotate the target genes. GO analysis indicate that gene transcription-related and ion transport-related GO terms were significantly enriched. In addition, the KEGG analyses showed that the target genes were strongly related to diverse types of tumor disease progression and anti-pathogen immunity pathways. In the current study, we firstly report changes in miRNA expression profiles in the glandular stomach of BALB/c mice at the early phase of C. muris invasion. This dysregulation in miRNA expression may contribute to our understanding of cryptosporidiosis pathology. This study provides a new perspective on the miRNA regulatory mechanisms of cryptosporidiosis, which may help in the development of effective control strategies against this pathogen.
Collapse
Affiliation(s)
- Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Songrui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Ke Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
7
|
Hu X, Yang L, Du Y, Meng X, Shi Y, Zeng J. Astragalus polysaccharide promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells by facilitating ANKFY1 expression through miR-760 inhibition. Bone Joint Res 2023; 12:476-485. [PMID: 37532241 PMCID: PMC10396440 DOI: 10.1302/2046-3758.128.bjr-2022-0248.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Aims Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression.
Collapse
Affiliation(s)
- Xianfeng Hu
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Liu Yang
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yanhua Du
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Xiangping Meng
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yuanyuan Shi
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Juan Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li X, Kong Y, Li H, Xu M, Jiang M, Sun W, Xu S. Circ_0081054 facilitates melanoma development via sponging miR-637 and regulating RAB9A. Skin Res Technol 2023; 29:e13313. [PMID: 37231931 PMCID: PMC10157265 DOI: 10.1111/srt.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Accumulating evidence announces that aberrantly expressed circRNAs were closely related to the development of human cancers. However, the role and mechanism of multiple circRNAs remain unclear. Our work aimed to disclose the functional role and mechanism of circ_0081054 in melanoma. METHODS Quantitative real-time polymerase chain reaction assay was utilized to detect circ_0081054, microRNA-637 (miR-637) and RAB9A (member RAS oncogene family) mRNA expression. Cell proliferative ability was evaluated via Cell Counting Kit-8 and colony formation assay. Cell invasion was assessed by using wound healing assay. RESULTS The significant upregulation of circ_0081054 was detected in melanoma tissues and cells. The proliferation, migration, glycolytic metabolism, and angiogenesis in melanoma cells were suppressed, while apoptosis was promoted following the silence of circ_0081054. In addition, circ_0081054 could target miR-637, and miR-637 inhibitor could reverse the effects of circ_0081054 deficiency. Furthermore, RAB9A was a target gene for miR-637 and RAB9A overexpression could reverse the effects of miR-637 overexpression. In addition, the deficiency of circ_0081054 hampered tumor growth in vivo. Moreover, circ_0081054 could regulate RAB9A expression by sponging miR-637. CONCLUSION All results indicated that circ_0081054 promoted the malignant behaviors of melanoma cells partly by regulating the miR-637/RAB9A molecular axis.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Yinghui Kong
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - He Li
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Manyuan Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Ming Jiang
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Weiguo Sun
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Suping Xu
- Department of DermatologyThe Affiliated Huaian NO.1 People's Hospital of Nanjing Medical UniversityHuaianChina
| |
Collapse
|
9
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Hamidi AA, Taghehchian N, Zangouei AS, Akhlaghipour I, Maharati A, Basirat Z, Moghbeli M. Molecular mechanisms of microRNA-216a during tumor progression. Cancer Cell Int 2023; 23:19. [PMID: 36740668 PMCID: PMC9899407 DOI: 10.1186/s12935-023-02865-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) as the members of non-coding RNAs family are involved in post-transcriptional regulation by translational inhibiting or mRNA degradation. They have a critical role in regulation of cell proliferation and migration. MiRNAs aberrations have been reported in various cancers. Considering the importance of these factors in regulation of cellular processes and their high stability in body fluids, these factors can be suggested as suitable non-invasive markers for the cancer diagnosis. MiR-216a deregulation has been frequently reported in different cancers. Therefore, in the present review we discussed the molecular mechanisms of the miR-216a during tumor progression. It has been reported that miR-216a mainly functioned as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review paves the way to suggest the miR-216a as a probable therapeutic and diagnostic target in cancer patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Shi L, Kan J, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta. FEBS J 2023; 290:1134-1150. [PMID: 36180981 DOI: 10.1111/febs.16639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer is the most aggressive cancer with the highest mortality and incidence rates worldwide. MicroRNAs have been identified as potential targets for non-small cell lung cancer (NSCLC) treatment. However, the modulatory role of miR-514b-5p in NSCLC progression is little known. In the present study, miRNA expression datasets for NSCLC were downloaded from the Cancer Genome Atlas and Gene Ontology Omnibus databases. Gene expression was assessed using a quantitative real-time PCR, and western blot analysis and immunohistochemical staining was used to determine protein expression. Gain and loss of function experiments were performed to investigate the impact of miR-514b-5p and small glutamine-rich tetratricopeptide repeat-containing protein beta (SGTB) on cell proliferation and apoptosis. RNA immunoprecipitation and dual-luciferase assays were performed to analyse the target gene of miR-514b-5p. The biological roles of miR-514b-5p were lastly evaluated using nude mouse tumorigenicity assays in vivo. We found that miR-514b-5p was dramatically increased in NSCLC tissues and higher miR-514b-5p expression was associated with poorer overall survival in NSCLC patients. Furthermore, overexpression of miR-514b-5p promoted NSCLC cell growth and suppressed apoptosis by inducing the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT and p38 signalling pathways. Mechanistically, dual-luciferase and the RNA immunoprecipitation results highlighted that SGTB was a target gene of miR-514b-5p. Moreover, overexpression of SGTB reduced cell division and promoted apoptosis in vitro through blocking the PI3K/AKT and p38 signalling pathways. Our findings indicated that miR-514b-5p contributes to carcinoma progression in NSCLC via the PI3K/AKT and p38 signalling pathways by targeting SGTB and this could be a promising diagnostic and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Kan
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Zhuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyun Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shaobing Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Ke
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
13
|
Qi D, Geng Y, Cardenas J, Gu J, Yi SS, Huang JH, Fonkem E, Wu E. Transcriptomic analyses of patient peripheral blood with hemoglobin depletion reveal glioblastoma biomarkers. NPJ Genom Med 2023; 8:2. [PMID: 36697401 PMCID: PMC9877004 DOI: 10.1038/s41525-022-00348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Peripheral blood is gaining prominence as a noninvasive alternative to tissue biopsy to develop biomarkers for glioblastoma (GBM); however, widely utilized blood-based biomarkers in clinical settings have not yet been identified due to the lack of a robust detection approach. Here, we describe the application of globin reduction in RNA sequencing of whole blood (i.e., WBGR) and perform transcriptomic analysis to identify GBM-associated transcriptomic changes. By using WBGR, we improved the detection sensitivity of informatic reads and identified differential gene expression in GBM blood. By analyzing tumor tissues, we identified transcriptomic traits of GBM blood. Further functional enrichment analyses retained the most changed genes in GBM. Subsequent validation elicited a 10-gene panel covering mRNA, long noncoding RNA, and microRNA (i.e., GBM-Dx panel) that has translational potential to aid in the early detection or clinical management of GBM. Here, we report an integrated approach, WBGR, with comprehensive analytic capacity for blood-based marker identification.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Yiqun Geng
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
- Laboratory of Molecular Pathology, Shantou University Medical College, 515041, Shantou, China
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - S Stephen Yi
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason H Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
- Texas A & M University School of Pharmacy, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
[miR-367-3p Regulates Cells Proliferation and Invasion in NSCLC by Targeting ZEB2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:782-788. [PMID: 36419391 PMCID: PMC9720678 DOI: 10.3779/j.issn.1009-3419.2022.101.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND microRNAs play an important role in the development and biological phenotype of lung cancer. The present study was to investigate miR-367-3p level in non-small cell lung cancer (NSCLC) patients and its biological function of NSCLC cells. METHODS Twenty-two patients with NSCLC (13 cases of adenocarcinoma and 9 cases of squamous carcinoma) admitted to our hospital and treated by surgery were included. During the operation, cancer tissue, paracancerous tissue and 5 mL peripheral blood were collected. Meanwhile, 22 healthy controls were selected and 5 mL peripheral blood was taken. Real-time PCR was applied to detected the expression of miR-367-3p in cancer tissues, peripheral blood of patients with NSCLC and healthy controls. miR-367-3p was detected in lung cancer cell lines (A549) and normal bronchial epithelial cells (BEAS-2B). The proliferation and invasion ability of A549 cells before and after infection were detected by MTT and Transwell assay after transfection with exogenous miR-367-3p. The downstream target gene of miR-367-3p was analyzed by bioinformatics. Zinc finger E-box binding homeobox 2 (ZEB2) was detected by Real-time PCR and Western blot. RESULTS miR-367-3p in cancer tissues of 22 NSCLC patients was lower than corresponding normal tissues (P<0.05), and the serum miR-367-3p level in healthy subjects was higher than NSCLC subjects (P<0.05). The area under the receiver operating characteristic (ROC) curve of NSCLC was 0.95 (95%CI: 0.89-1.00) and 0.85 (95%CI: 0.74-0.97) respectively; The proliferation and migration ability of lung cancer cell line A549 transfected with exogenous miR-367-3p decreased significantly (P<0.05); Bioinformatics predicted that the downstream target of miR-367-3p was ZEB2 and up-regulating miR-367-3p expression, ZEB2 gene was decreased (P<0.05). The Cancer Genome Atlas (TCGA) data analysis showed that there was no significant difference in overall survival (OS) and disease free survival (DFS) between ZEB2 high expression group and low expression group (P>0.05). ZEB2 expression was positively correlated with infiltration of B lymphocytes (r=0.32, P<005), CD8⁺ T cells (r=0.44, P<005), CD4⁺ T cells (r=0.46, P<005), macrophages (r=0.65, P<005), neutrophils (r=0.73, P<005) and dendritic cells (r=0.71, P<005) in NSCLC. CONCLUSIONS The expression of miR-367-3p is down regulated in NSCLC patients and participates in the biological process of proliferation and invasion of NSCLC by targeting ZEB2 gene.
Collapse
|
15
|
Xie H, Wang M, Yu H, Wang H, Ding L, Wang R, Luo W, Lu Z, Zheng Q, Ren L, Zhou Z, Su W, Xia L, Li G. METTL1 drives tumor progression of bladder cancer via degrading ATF3 mRNA in an m7G-modified miR-760-dependent manner. Cell Death Dis 2022; 8:458. [PMID: 36396627 PMCID: PMC9672058 DOI: 10.1038/s41420-022-01236-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
7-methylguanosine (m7G) modification is recently found to conservatively exist in RNA internal position besides mRNA caps and mediates the various RNA metabolisms. As the core confirmed transmethylase of m7G modification, METTL1 has been reported in certain human cancers. However, the role of internal m7G at miRNAs and its core writer METTL1 in bladder cancer (BCa) remains to be elucidated. Here, we demonstrated that METTL1 was indispensable for BCa proliferation and metastasis in vitro and in vivo. By combining miRNA sequencing, m7G methylated RNA immunoprecipitation (MeRIP) and RIP, we identified METTL1 promoted the processing of miR-760 in an m7G-dependent manner. Transcription sequencing suggested that METTL1 indirectly degrades tumor suppressor ATF3 mRNA mediated by miR-760. Together, we concluded a regulatory axis composed of METTL1/m7G/miR-760/ATF3 in regulating BCa progression and provided potential therapeutic targets for BCa.
Collapse
|
16
|
Liang X, Hu M, Yuan W, Liu Y, Li J, Bai C, Yuan Z. MicroRNA-4487 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting RAS p21 protein activator 1. Pathol Res Pract 2022; 234:153903. [DOI: 10.1016/j.prp.2022.153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
|
17
|
Lin X, Zhong L, Wang N, Chu X, Liu B. Hsa_circ_0103232 promotes melanoma cells proliferation and invasion via targeting miR-661/RAB3D. Cell Cycle 2022; 21:1811-1826. [PMID: 35549813 PMCID: PMC9359370 DOI: 10.1080/15384101.2022.2072636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Little is known about the role of hsa_circ_0103232 in melanoma. This study researched the role of hsa_circ_0103232 in melanoma progression. Hsa_circ_0103232 expression in clinical tissues of melanoma patients and melanoma cells was detected by qRT-PCR. Hsa_circ_0103232 localization in melanoma cells was visualized by fluorescence in situ hybridization. Hsa_circ_0103232 effect on melanoma cells viability, proliferation, migration, and invasion was explored by cell counting kit-8 (CCK-8) assay, Edu experiment, wound healing assay, and Transwell experiment. RNA pull-down assay and dual-luciferase reporter gene assay were performed to verify the binding of hsa_circ_0103232 with miR-661, and the binding of miR-661 and RAB3D. Xenograft tumor models were constructed. Western blot and immunohistochemistry were used for protein expression detection. Hsa_circ_0103232 expression was increased in melanoma patients, indicating lower overall survival. Hsa_circ_0103232 was mainly expressed in the cytoplasm of melanoma cells. Silencing hsa_circ_0103232 suppressed melanoma cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) (P < 0.01). Hsa_circ_0103232 functioned as a sponge of miR-661 to increase RAB3D expression. miR-661 overexpression partially reversed hsa_circ_0103232 promoting effect on melanoma cells viability, proliferation, migration, invasion, and EMT (P < 0.01). In melanoma patients, hsa_circ_0103232 expression was negatively correlated with miR-661 and positively correlated with RAB3D. Silencing hsa_circ_0103232 suppressed melanoma cell growth in vivo and Ki67 and RAB3D expression in xenograft tumors (P < 0.01). Hsa_circ_0103232 is a tumor promoter in melanoma to enhance malignant phenotype and growth in vivo via sponging miR-661/RAB3D. Hsa_circ_0103232 may be a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Xing Lin
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Nian Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Dysregulation of miR-411 in cancer: Causative factor for pathogenesis, diagnosis and prognosis. Biomed Pharmacother 2022; 149:112896. [PMID: 35358797 DOI: 10.1016/j.biopha.2022.112896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
MiRNA accounts for 1-3% of genes but regulates more than 30% of gene expression in humans. This article analyzes the current deficiencies and challenges of miR-411 research and looks forward to the prospects of miR-411 in cancer. MiR-411 is a non-coding RNA located on chromosome 14. MiR-411 is abnormally expressed in a variety of cancers. The dysregulation of miR-411 can affect cancer cell proliferation, invasion, migration, apoptosis, colony formation, etc. miR-411 can be regulated by different lncRNAs and circRNAs. By targeting multiple genes, miR-411 participates in the activation of the MAPK signaling pathway, PI3K/AKT/mTOR signaling pathway, p53 signaling pathway, Ras signaling pathway, NF-κB signaling pathway, and Wnt/β-catenin signaling pathway. The expression of miR-411 is related to the diagnosis, prognosis, and sensitivity of drugs in cancer patients. In conclusion, this work outlines the molecular mechanisms and cellular functions of aberrant expression of miR-411 and its target genes in cancer to reveal its potential value in diagnosis, prognosis, and drug sensitivity.
Collapse
|
19
|
Huang X, Huang M, Chen M, Chen X. lncRNA SLC9A3-AS1 Promotes Oncogenesis of NSCLC via Sponging microRNA-760 and May Serve as a Prognosis Predictor of NSCLC Patients. Cancer Manag Res 2022; 14:1087-1098. [PMID: 35300063 PMCID: PMC8921674 DOI: 10.2147/cmar.s352308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a prevalent type of lung cancer worldwide. Long noncoding RNA (lncRNA) SLC9A3-AS1 is reported to play a carcinogenic role in nasopharyngeal carcinoma, but its full-scale role in NSCLC remains elusive. Methods SLC9A3-AS1 expression was detected in serum and tissue of NSLCC patients and NSCLC cell lines. The effects of SLC9A3-AS1 on NSCLC proliferation, migration and invasion were evaluated using CCK-8 and transwell assays. In addition, the potential downstream molecules of SLC9A3-AS1 were searched and explored by bioinformatics analysis, RT-qPCR, dual-luciferase reporter, and rescue experiments. Results SLC9A3-AS1 was upregulated in NSCLC tissues and cell lines. SLC9A3-AS1 possessed a favorable ability in diagnosing NSCLC. A high level of SLC9A3-AS1 was associated with poor prognosis in NSCLC patients. Functionally, SLC9A3-AS1 knockdown inhibited cell proliferation, migration, and invasion of NSCLC cells. Mechanistically, SLC9A3-AS1 acted as competing endogenous RNA for miR-760 to regulate NSCLC progression. In addition, rescue assay showed that downregulation of miR-760 could reverse the modulatory activity of SLC9A3-AS1 knockdown on NSCLC cells. Conclusion SLC9A3-AS1 was upregulated in NSCLC, and SLC9A3-AS1 knockdown hindered NSCLC progression through targeting miR-760, suggesting that it may prove to be a novel biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiuming Huang
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Mingfang Huang
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Minbiao Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
- Correspondence: Xianshan Chen, Department of Thoracic Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, Hainan, 570311, People’s Republic of China, Email
| |
Collapse
|
20
|
Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, Stathopoulos C. Revisiting miRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int J Mol Sci 2022; 23:1299. [PMID: 35163222 PMCID: PMC8836065 DOI: 10.3390/ijms23031299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.
Collapse
Affiliation(s)
- Aigli Korfiati
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | - Katerina Grafanaki
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - George Sakellaropoulos
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | | |
Collapse
|
21
|
Huang X, Liang H, Zhang H, Tian L, Cong P, Wu T, Zhang Q, Gao X, Li W, Chen A, Zhang Y, Dong Q, Wan H, He M, Dai D, Li Z, Xiong L. The Potential Mechanism of Cancer Patients Appearing More Vulnerable to SARS-CoV-2 and Poor Outcomes: A Pan-Cancer Bioinformatics Analysis. Front Immunol 2022; 12:804387. [PMID: 35082790 PMCID: PMC8784815 DOI: 10.3389/fimmu.2021.804387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
To explore the potential mechanism of cancer patients appearing more vulnerable to SARS-CoV-2 infection and poor COVID-19 outcomes, we conducted an integrative bioinformatics analysis for SARS-CoV-2-required genes and host genes and variants related to SARS-CoV-2 susceptibility and COVID-19 severity. BLCA, HNSC, KIRC, KIRP, LGG, PCPG, PRAD, TGCT, and THCA patients carrying rs10774671-A (OAS1) genotype may be more likely to have poor COVID-19 outcomes relative to those who carry rs10774671-G, because individuals carrying rs10774671-A will have lower expression of OAS1, which serves as a protective factor against SARS-CoV-2 processes and poor COVID-19 outcomes. SARS-CoV-2-required genes were correlated with TME, immune infiltration, overall survival, and anti-cancer drug sensitivity. CHOL patients may have a higher risk of SARS-CoV-2 infection than healthy subjects. SARS-CoV-2-induced ACE2 and NPC1 elevation may have a negative influence on the immune responses of LUSC and CD8+T infiltration of LUAD, and negatively affect the sensitivity of anti-lung cancer drugs. LUSC and LUAD patients may have a varying degree of adverse outcomes if they are infected with SARS-CoV-2. miR-760 may target and inhibit ACE2 expression. Cancer patients appearing vulnerable to SARS-CoV-2 infection and having poor COVID-19 outcomes may be partly due to host genetic factors and dysregulation of SARS-CoV-2-required genes. OAS1, ACE2, and miR-760 could serve as the treatment and intervention targets for SARS-CoV-2.
Collapse
Affiliation(s)
- Xinwei Huang
- *Correspondence: Lize Xiong, ; ; Xinwei Huang, ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Jiang K, Zou H. microRNA-20b-5p overexpression combing Pembrolizumab potentiates cancer cells to radiation therapy via repressing programmed death-ligand 1. Bioengineered 2021; 13:917-929. [PMID: 34968160 PMCID: PMC8805988 DOI: 10.1080/21655979.2021.2014617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radiation therapy (RT) is widely applied in cancer treatment. The sensitivity of tumor cells to RT is the key to the treatment. This study probes the role and mechanism of miR-20b-5p in Pembrolizumab’s affecting the radiosensitivity of tumor cells. After Pembrolizumab treatment or cell transfection (miR-20b-5p mimics and miR-20b-5p inhibitors), tumor cells (NCI-H460 and ZR-75-30) were exposed to RT. The sensitivity of NCI-H460 and ZR-75-30 to RT was evaluated by monitoring cell proliferation and apoptosis. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were adopted to evaluate the binding relationship between miR-20b-5p and CD274 (PD-L1). The xenograft model was established in nude mice to examine the mechanism of action of Pembrolizumab in vivo. Our outcomes exhibited that either Pembrolizumab treatment or miR-20b-5p overexpression potentiated radiosensitivity of tumor cells. Overexpressing miR-20b-5p enhanced radiosensitization of Pembrolizumab in vivo and in vitro by targeting PD-L1 and inactivating PD-L1/PD1. Overall, miR-20b-5p overexpression combined with Pembrolizumab potentiated cancer cells’ sensitivity to RT by repressing PD-L1/PD1.Abbreviations
Akt: serine/threonine kinase 1; cDNA: complementary DNA; CO2: carbon dioxide; EDTA: Ethylene Diamine Tetraacetic Acid; ENCORI: The Encyclopedia of RNA Interactomes; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IGF2BP2: insulin like growth factor 2 mRNA binding protein 2; IHC: Immunohistochemistry; LncRNA MALAT1: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1; miRNAs: MicroRNAs; Mt: Mutant type; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; NC: negative control; NR2F2: nuclear receptor subfamily 2 group F member 2; NSCLC: non-small cell lung cancer; OD: optical density; PBS: phosphate-buffered saline; PD-L1: Programmed death-ligand 1; PD-1: programmed death 1; PI3K: phosphatidylinositol 3-kinase; qRT-PCR: Quantitative reverse transcription-polymerase chain reaction; RIP: RNA immunoprecipitation; RIPA: Radio Immunoprecipitation Assay; RRM2: ribonucleotide reductase regulatory subunit M2; RT: Radiation therapy; U6: U6 small nuclear RNA; V: volume; WB: Western blot; Wt: wild type; x ± sd: mean ± standard deviation.
Collapse
Affiliation(s)
- Kexin Jiang
- Radiation Oncology Department of Gastrointestinal Cancer and Lymphoma, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Wang Q, Yan C, Zhang P, Li G, Zhu R, Wang H, Wu L, Xu G. Microarray Identifies a Key Carcinogenic Circular RNA 0008594 That Is Related to Non-Small-Cell Lung Cancer Development and Lymph Node Metastasis and Promotes NSCLC Progression by Regulating the miR-760-Mediated PI3K/AKT and MEK/ERK Pathways. Front Oncol 2021; 11:757541. [PMID: 34858831 PMCID: PMC8632265 DOI: 10.3389/fonc.2021.757541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to explore the circular RNA (circRNA/circ) profile engaged in non-small cell lung cancer (NSCLC) development and metastasis and to investigate potentially key carcinogenic circRNAs related to NSCLC. Methods CircRNA profiles between 10 NSCLC tissues and 10 adjacent tissues and between five NSCLC tissues with lymph node metastasis (LNM) and five NSCLC tissues without LNM were detected by Arraystar Human circRNA Array followed by bioinformatics. Circ_0008594 knockdown, circ_0004293 overexpression, and circ_0003832 overexpression plasmids were transfected into H23 and H460 cells to sort potential oncogenic circRNA. Then circ_0008594 overexpression and knockdown plasmids were transfected, followed by that circ_0008594 knockdown plus miR-760 knockdown plasmids were transfected into these cells. Cell proliferation, apoptosis, invasion, stemness, and pathways were detected. In addition, xenograft mice models were constructed via injecting H23 cells with circ_0008594 overexpression or knockdown to validate the findings. Results A total of 455 dysregulated circRNAs in NSCLC tissues versus adjacent tissues and 353 dysregulated circRNAs in NSCLC tissues with LNM versus those without LNM were discovered. Via cross-analysis, 19 accordant circRNAs were uncovered, among which three candidate circRNAs (circ_0008594, circ_0004293, circ_0003832) were chosen for functional experiments, during which it was observed that circ_0008549 affected H23 and H460 cell proliferation and apoptosis more obviously than circ_0004293 and circ_0003832. Subsequent experiments showed that circ_0008594 promoted H23 and H460 cell proliferation and invasion but affected stemness less and negatively regulated miR-760 via direct binding. Furthermore, miR-760 attenuated the effect of circ_0008549 on regulating H23 and H460 cell functions and the PI3K/AKT and MEK/ERK pathways. In vivo experiments further confirmed that circ_0008549 increased tumor volume, epithelial-mesenchymal transition, and the PI3K/AKT and MEK/ERK pathways while reducing tumor apoptosis and miR-760 NSCLC xenograft models. Conclusion Our study identifies several valuable circRNAs related to NSCLC development and LNM. Furthermore, as a key functional circRNA, circ_0008594 was observed to promote NSCLC progression by regulating the miR-760-mediated PI3K/AKT and MEK/ERK pathways.
Collapse
Affiliation(s)
- Qiushi Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunhua Yan
- Department of Respiratory, Longgang District People's Hospital of Shenzhen, Shenzhen, China.,Department of Respiratory, Longgang District The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Pengfei Zhang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruidong Zhu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanbing Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Libo Wu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Xiao J, He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res 2021; 13:8781-8794. [PMID: 34849030 PMCID: PMC8627240 DOI: 10.2147/cmar.s336265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
The crucial treatment for nasopharyngeal carcinoma (NPC) is radiation therapy supplemented by chemotherapy. However, long-term radiation therapy can cause some genetic and proteomic changes to produce radiation resistance, leading to tumour recurrence and poor prognosis. Therefore, the search for new markers that can overcome the resistance of tumor cells to drugs and radiotherapy and improve the sensitivity of tumor cells to drugs and radiotherapy is one of the most important goals of pharmacogenomics and cancer research, which is important for predicting treatment response and prognosis. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may play important roles in regulating chemo- and radiation resistance in nasopharyngeal carcinoma by controlling the cell cycle, proliferation, apoptosis, and DNA damage repair, as well as other signalling pathways. Recent research has suggested that selective modulation of ncRNA activity can improve the response to chemotherapy and radiotherapy, providing an innovative antitumour approach based on ncRNA-related gene therapy. Therefore, ncRNAs can serve as biomarkers for tumour prediction and prognosis, play a role in overcoming drug resistance and radiation resistance in NPC, and can also serve as targets for developing new therapeutic strategies. In this review, we discuss the involvement of ncRNAs in chemotherapy and radiation resistance in NPC. The effects of these molecules on predicting therapeutic cancer are highlighted.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| |
Collapse
|
25
|
Xu L, Zhao Q, Li D, Luo J, Ma W, Jin Y, Li C, Chen J, Zhao K, Zheng Y, Yu D. MicroRNA-760 resists ambient PM 2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117213. [PMID: 33933780 DOI: 10.1016/j.envpol.2021.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM2.5-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM2.5 as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM2.5 exposure. More importantly, we revealed a "non-conventional" miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM2.5-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM2.5-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Fiorentino G, Visintainer R, Domenici E, Lauria M, Marchetti L. MOUSSE: Multi-Omics Using Subject-Specific SignaturEs. Cancers (Basel) 2021; 13:cancers13143423. [PMID: 34298641 PMCID: PMC8304726 DOI: 10.3390/cancers13143423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Modern profiling technologies have led to relevant progress toward precision medicine and disease management. A new trend in patient classification is to integrate multiple data types for the same subjects to increase the chance of identifying meaningful phenotype groups. However, these methodologies are still in their infancy, with their performance varying widely depending on the biological conditions analyzed. We developed MOUSSE, a new unsupervised and normalization-free tool for multi-omics integration able to maintain good clustering performance across a wide range of omics data. We verified its efficiency in clustering patients based on survival for ten different cancer types. The results we obtained show a higher average score in classification performance than ten other state-of-the-art algorithms. We have further validated the method by identifying a list of biological features potentially involved in patient survival, finding a high degree of concordance with the literature. Abstract High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
Collapse
Affiliation(s)
- Giuseppe Fiorentino
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
| | - Roberto Visintainer
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
| | - Enrico Domenici
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
| | - Mario Lauria
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Department of Mathematics, University of Trento, 38123 Povo, Italy
| | - Luca Marchetti
- Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; (G.F.); (R.V.); (E.D.); (M.L.)
- Correspondence:
| |
Collapse
|
27
|
Wang Q, Wang G, Xu X, Chen Z. miR-760 mediated the proliferation and metastasis of hepatocellular carcinoma cells by regulating HMGA2. Pathol Res Pract 2021; 222:153420. [PMID: 33887625 DOI: 10.1016/j.prp.2021.153420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The purpose of our study was to investigate the roles of miR-760 and its potential mechanisms in HCC. METHODS The functions of miR-760 were identified and measured by MTT, colony formation, transwell, and flow cytometry assays. Luciferase assay was applied to verify the direct binding of miR-760 on HMGA2 3'untranslated region (3'UTR). Then, in vitro experiment was used to investigate the biological effects of miR-760 and HMGA2. Luciferase and ChIP assays were used to detect the validity of SP1 binding sites on the miR-760 promoter. RESULTS We demonstrated that miR-760 overexpression suppressed cell proliferation, migration, and invasion in HCC. Besides, HMGA2 was demonstrated as a direct target gene of miR-760. Furthermore, we found that methylation may result in the downregulation of miR-760, and SP1 could inhibit the transcription of miR-760. CONCLUSIONS Our study demonstrated that SP1/miR-760/HMGA2 may serve as a molecular regulatory axis for HCC treatment.
Collapse
Affiliation(s)
- Quhui Wang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Gang Wang
- Department of Anesthesiology, Union Hospital Affiliated With Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaodong Xu
- Department of General Surgery, The 4th Affiliated Hospital of Nantong University, Yancheng, 224000, China
| | - Zhong Chen
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
28
|
Aghajanzadeh T, Tebbi K, Talkhabi M. Identification of potential key genes and miRNAs involved in Hepatoblastoma pathogenesis and prognosis. J Cell Commun Signal 2021; 15:131-142. [PMID: 33051830 PMCID: PMC7904995 DOI: 10.1007/s12079-020-00584-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatoblastoma (HB) is one of the most common liver malignancies in children, while the molecular basis of the disease is largely unknown. Therefore, this study aims to explore the key genes and molecular mechanisms of the pathogenesis of HB using a bioinformatics approach. The gene expression dataset GSE131329 was used to find differentially expressed genes (DEGs). Functional and enrichment analyses of the DEGs were performed by the EnrichR. Then, the protein-protein interaction (PPI) network of the up-regulated genes was constructed and visualized using STRING database and Cytoscape software, respectively. MCODE was used to detect the significant modules of the PPI network, and cytoHubba was utilized to rank the important nodes (genes) of the PPI modules. Overall, six ranking methods were employed and the results were validated by the Oncopression database. Moreover, the upstream regulatory network and the miRNA-target interactions of the up-regulated DEGs were analyzed by the X2K web and the miRTarBase respectively. A total of 594 DEGs, including 221 up- and 373 down-regulated genes, were obtained, which were enriched in different cellular and metabolic processes, human diseases, and cancer. Furthermore, 15 hub genes were screened, out of which, 11 were validated. Top 10 transcription factors, kinases, and miRNAs were also determined. To the best of our knowledge, the association of RACGAP1, MKI67, FOXM1, SIN3A, miR-193b, and miR-760 with HB was reported for the first time. Our findings may be used to shed light on the underlying mechanisms of HB and provide new insights for better prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Taha Aghajanzadeh
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Kiarash Tebbi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
29
|
Cheng F, Liu J, Zhang Y, You Q, Chen B, Cheng J, Deng C. Long Non-Coding RNA UBA6-AS1 Promotes the Malignant Properties of Glioblastoma by Competitively Binding to microRNA-760 and Enhancing Homeobox A2 Expression. Cancer Manag Res 2021; 13:379-392. [PMID: 33469379 PMCID: PMC7813458 DOI: 10.2147/cmar.s287676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background The dysregulation of long non-coding RNAs is a frequent finding in glioblastoma (GBM) and is considered as a crucial mechanism contributing to GBM oncogenesis and progression. The biological roles and underlying mechanisms of action of UBA6 antisense RNA 1 (UBA6-AS1) in GBM have been rarely investigated. Therefore, the aim of the present study was to investigate in detail the role of UBA6-AS1 in the modulation of the malignant properties of GBM and explore the possible underlying mechanism(s). Methods The expression of UBA6-AS1 in GBM was determined via reverse transcription-quantitative PCR. Cell Counting Kit-8 assay, flow cytometric analysis, Transwell migration and invasion assays, and in vivo tumorigenicity assay were applied to elucidate the biological effects of UBA6-AS1 on GBM cells. The possible biological events associated with UBA6-AS1 were investigated by luciferase reporter, RNA immunoprecipitation (RIP) and rescue assays. Results UBA6-AS1 was overexpressed in GBM, which was consistent with the data from The Cancer Genome Atlas database. In the case of UBA6-AS1 depletion, GBM cell proliferation, migration and invasion were notably decreased and cell apoptosis was enhanced in vitro. Additionally, knockdown of UBA6-AS1 suppressed the proliferation of GBM cells in vivo. Mechanistically, UBA6-AS1 functioned as a competing endogenous RNA by adsorbing miR-760 and, consequently, upregulating homeobox A2 (HOXA2) expression. Rescue experiments demonstrated that the UBA6-AS1 silencing-mediated regulatory effects on GBM cells were reversed by the decrease of miR-760 or restoration of HOXA2 expression. Conclusion Therefore, the results of the present study revealed that UBA6-AS1 promoted the malignant progression of GBM via targeting the miR-760/HOXA2 axis, thereby representing a promising effective target for the treatment of GBM.
Collapse
Affiliation(s)
- Feifei Cheng
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Jiang Liu
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Yundong Zhang
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Qiuxiang You
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Jing Cheng
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Chunyan Deng
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| |
Collapse
|