1
|
Biswas S, Hilser JR, Woodward NC, Wang Z, Gukasyan J, Nemet I, Schwartzman WS, Huang P, Han Y, Fouladian Z, Charugundla S, Spencer NJ, Pan C, Tang WHW, Lusis AJ, Hazen SL, Hartiala JA, Allayee H. Exploring the Role of Glycine Metabolism in Coronary Artery Disease: Insights from Human Genetics and Mouse Models. Nutrients 2025; 17:198. [PMID: 39796632 PMCID: PMC11723402 DOI: 10.3390/nu17010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Methods: Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank. Genetic determinants of glycine levels were identified through a genome-wide association study (GWAS) and used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A dietary supplementation study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on cardiometabolic traits and aortic lesion formation. Results: Among 105,718 UK Biobank subjects, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR = 0.76, 95% CI 0.67-0.87; p < 0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR = 0.70, 95% CI 0.65-0.77; p < 0.0001) after adjustment for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A GWAS meta-analysis with 230,947 subjects identified 61 loci for glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did not provide significant evidence for an association with decreased risk of CAD. Glycine supplementation in mice had no effects on cardiometabolic traits or atherosclerotic lesion development. Conclusions: While expanding the genetic architecture of glycine metabolism, MR analyses and in vivo feeding studies did not provide evidence that the clinical association of this amino acid with atherosclerosis represents a causal relationship.
Collapse
Affiliation(s)
- Subarna Biswas
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James R. Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicholas C. Woodward
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Janet Gukasyan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ina Nemet
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William S. Schwartzman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pin Huang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yi Han
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zachary Fouladian
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Sarada Charugundla
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Neal J. Spencer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jaana A. Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Malinowski D, Safranow K, Pawlik A. LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina. J Pers Med 2024; 14:213. [PMID: 38392646 PMCID: PMC10890678 DOI: 10.3390/jpm14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Coronary artery disease is caused by changes in the coronary arteries due to the atherosclerotic process and thrombotic changes. A very important role in the development of the atherosclerotic process in the coronary vessels is played by the inflammatory process and the immune response. Due to the important role of lipids and the coagulation process in the atherosclerotic process, research has also focused on genes affecting lipid metabolism and the coagulation system. Lipoprotein lipase (LPL) is an enzyme that metabolises lipids, hydrolysing triglycerides to produce free fatty acids and glycerol. Protein C (PC) is an essential component of coagulation and fibrinolysis. It is activated on the endothelial surface by the membrane-bound thrombin-thrombomodulin complex. Platelet-derived growth factor (PDGF) has a number of important functions in processes related to fibroblast and smooth muscle cell function. Due to their influence on lipid metabolism and coagulation processes, LPL, PROCR (endothelial cell protein C receptor) and PDGF may affect the atherosclerotic process and, thus, the risk of coronary heart disease. The aim of the study was to examine the associations between the LPL rs264, PROCR rs867186 and PDGF rs974819 gene polymorphisms and the risk of unstable angina and selected clinical parameters. METHODS The study included 232 patients with unstable angina and 144 healthy subjects as the control group. Genotyping was performed using real-time PCR. RESULTS There were no statistically significant differences in the distribution of the polymorphisms tested between the patients with unstable angina and the control subjects. The results showed associations between the PROCR rs867186 and PDGF rs974819 polymorphisms and some clinical parameters in patients with unstable angina. In patients with the PDGF rs974819 CC genotype, there were increased values for cholesterol and LDL serum levels in comparison with patients with the PDGF rs974819 CT and TT genotypes. In patients with the PROCR rs867186 AA genotype, HDL serum levels were lower than in patients with the GA genotype. CONCLUSIONS The results of our study did not show that the LPL rs264, PROCR rs867186 and PDGF rs974819 gene polymorphisms were significant risk factors for unstable angina in our population. The results of the study suggest that PDGF rs974819 and PROCR rs867186 may be associated with some parameters of lipid metabolism.
Collapse
Affiliation(s)
- Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Biswas S, Hilser JR, Woodward NC, Wang Z, Gukasyan J, Nemet I, Schwartzman WS, Huang P, Han Y, Fouladian Z, Charugundla S, Spencer NJ, Pan C, Tang WW, Lusis AJ, Hazen SL, Hartiala JA, Allayee H. Effect of Genetic and Dietary Perturbation of Glycine Metabolism on Atherosclerosis in Humans and Mice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.08.23299748. [PMID: 38168321 PMCID: PMC10760269 DOI: 10.1101/2023.12.08.23299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.
Collapse
Affiliation(s)
- Subarna Biswas
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nicholas C. Woodward
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Janet Gukasyan
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - William S. Schwartzman
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Pin Huang
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Yi Han
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zachary Fouladian
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Neal J. Spencer
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Calvin Pan
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Aldons J. Lusis
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaana A. Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
4
|
Zhang Y, Han S, Liu C, Zheng Y, Li H, Gao F, Bian Y, Liu X, Liu H, Hu S, Li Y, Chen ZJ, Zhao S, Zhao H. THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic β-cell function and preserving β-cell mass. Nat Commun 2023; 14:1020. [PMID: 36823211 PMCID: PMC9950491 DOI: 10.1038/s41467-023-36680-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Impaired insulin secretion is a hallmark in type 2 diabetes mellitus (T2DM). THADA has been identified as a candidate gene for T2DM, but its role in glucose homeostasis remains elusive. Here we report that THADA is strongly activated in human and mouse islets of T2DM. Both global and β-cell-specific Thada-knockout mice exhibit improved glycemic control owing to enhanced β-cell function and decreased β-cell apoptosis. THADA reduces endoplasmic reticulum (ER) Ca2+ stores in β-cells by inhibiting Ca2+ re-uptake via SERCA2 and inducing Ca2+ leakage through RyR2. Upon persistent ER stress, THADA interacts with and activates the pro-apoptotic complex comprising DR5, FADD and caspase-8, thus aggravating ER stress-induced apoptosis. Importantly, THADA deficiency protects mice from high-fat high-sucrose diet- and streptozotocin-induced hyperglycemia by restoring insulin secretion and preserving β-cell mass. Moreover, treatment with alnustone inhibits THADA's function, resulting in ameliorated hyperglycemia in obese mice. Collectively, our results support pursuit of THADA as a potential target for developing T2DM therapies.
Collapse
Affiliation(s)
- Yuqing Zhang
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Shan Han
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Congcong Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Hao Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, 250014, Jinan, Shandong, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, 100101, Beijing, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Xin Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Shourui Hu
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Yuxuan Li
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, 200135, Shanghai, China. .,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, 250012, Jinan, China.
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, 250012, Jinan, Shandong, China. .,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China.
| |
Collapse
|
5
|
Daggag H, Gjesing AP, Mohammad A, Ängquist L, Shobi B, Antony S, Haj D, Al Tikriti A, Buckley A, Hansen T, Barakat MT. Monogenic diabetes variants in Emirati women with gestational diabetes are associated with risk of non-autoimmune diabetes within 5 years after pregnancy. Metabol Open 2022; 16:100213. [DOI: 10.1016/j.metop.2022.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
|
6
|
Giordo R, Gulsha R, Kalla S, Calin GA, Lipovich L. LncRNA-Associated Genetic Etiologies Are Shared between Type 2 Diabetes and Cancers in the UAE Population. Cancers (Basel) 2022; 14:3313. [PMID: 35884374 PMCID: PMC9313416 DOI: 10.3390/cancers14143313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous epidemiological studies place patients with T2D at a higher risk for cancer. Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D and cancer; however, the biological mechanisms linking the two diseases remain largely unknown. The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants associated with both T2D and cancer. Most significant disease-associated variants reside in non-coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs) at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer. Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA genetic variants with significant diabetes and cancer associations overlap in the UAE population. We first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in the UAE population.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Rida Gulsha
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Sarah Kalla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| |
Collapse
|
7
|
Jing J, Xu D, Li Z, Jiang M, Wang J, Zhang J. Genetic variants in MIR2113 and MIR129-LEP are associated with the susceptibility of COPD in the Chinese Han population. Pulm Pharmacol Ther 2020; 64:101945. [PMID: 32931917 DOI: 10.1016/j.pupt.2020.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/16/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is the result of interaction between genetic and environmental factors. In this study, we aimed to explore whether MIR2113 and MIR129-LEP polymorphisms confer susceptibility to COPD. METHODS We selected five polymorphisms of two genes (MIR2113: rs2505059 and rs9320913; MIR129-LEP: rs7778167, rs791595 and rs4731420) based on previous studies and genotyped 629 samples, which included 315 COPD patients and 314 controls with Agena MassARRAY platform. The association of MIR2113 and MIR129-LEP polymorphisms with COPD risk was conducted with logistic regression by calculating odd ratios (OR) and 95% confidence intervals (CI). RESULTS MIR2113 rs2505059 was remarkably linked with a decreased susceptibility of COPD in five genetic models, whereas MIR2113 rs9320913, MIR129-LEP rs791595 and MIR129-LEP rs4731420 could enhance the susceptibility of COPD in the Chinese Han population (P < 0.05). Stratified analysis revealed that the influences of genetic variants on COPD risk were dependent on age, sex, Body mass index or smoking status (P < 0.05). Haplotype analysis showed that Ars791595Crs4731420 haplotype significant increased the susceptibility of COPD. CONCLUSION It suggested that polymorphisms of MIR2113 and MIR129-LEP might be linked with the susceptibility of COPD among the Chinese Han population.
Collapse
Affiliation(s)
- Jing Jing
- COPD Laboratory of Clinical Research Center, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China.
| | - Dan Xu
- COPD Laboratory of Clinical Research Center, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China
| | - Zheng Li
- COPD Laboratory of Clinical Research Center, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China
| | - Min Jiang
- Clinical Research Center, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China
| | - Jing Wang
- Clinical Research Center, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China
| | - Jian Zhang
- Department of Respiratory Intensive Care, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang, 830099, PR China
| |
Collapse
|
8
|
Găman MA, Cozma MA, Dobrică EC, Bacalbașa N, Bratu OG, Diaconu CC. Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes. Metabolites 2020; 10:195. [PMID: 32423050 PMCID: PMC7280968 DOI: 10.3390/metabo10050195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
Previous studies have reported age and gender disparities in the occurrence and therapeutic approach of dyslipidemia and (or) coronary heart disease (CHD) in patients with type 2 diabetes mellitus (T2DM). We aimed to investigate these differences in Romanian patients with T2DM. A cross-sectional, observational, retrospective study was conducted using the medical records of T2DM patients who attended the outpatient facility of the Internal Medicine Clinic of the Clinical Emergency Hospital of Bucharest, Romania for routine check-ups in a six-month period. We analyzed the records of 217 diabetic patients (mean age 69 ± 11 years; 51.15% women). We found no significant gender differences in the occurrence of dyslipidemia, CHD or CHD + dyslipidemia or in terms of statin prescription. However; patients aged 65 years or older were significantly more affected by dyslipidemia, CHD or CHD + dyslipidemia, versus subjects aged <65 years. Further, they were more likely to be prescribed statin therapy (p < 0.0001 for all). Statins were prescribed to 67.24% of the patients with dyslipidemia; 61.01% of the subjects with CHD; and to 91.48% of the patients who had both conditions. e recorded no gender differences in the occurrence of CHD and (or) dyslipidemia in Romanian T2DM patients. Patients aged 65 years or older had a higher prevalence of CHD and/or dyslipidemia, and were more likely to be prescribed statins, versus younger counterparts. However, many T2DM patients with CHD and (or) dyslipidemia were undertreated: Nearly 33% of the subjects with dyslipidemia, and nearly 40% of the ones with CHD were not prescribed statins.
Collapse
Affiliation(s)
- Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Matei-Alexandru Cozma
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
| | - Elena-Codruța Dobrică
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
| | - Nicolae Bacalbașa
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
- Department of Visceral Surgery, Fundeni Clinical Institute, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Ovidiu Gabriel Bratu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
- Urology Clinic, Carol Davila University Emergency Central Emergency Military Hospital, 88 Mircea Vulcanescu Street, 010825 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050085 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania; (M.-A.C.); (E.-C.D.); (N.B.); (O.G.B.); (C.C.D.)
- Internal Medicine Clinic, Clinical Emergency Hospital of Bucharest, 8 Calea Floreasca, 014461 Bucharest, Romania
| |
Collapse
|