1
|
Fang C, Tang X, Zhang Q, Yu Q, Deng S, Wu S, Fang R. Effects of Dietary Lonicera flos and Sucutellaria baicalensis Mixed Extracts Supplementation on Reproductive Performance, Umbilical Cord Blood Parameters, Colostrum Ingredients and Immunoglobulin Contents of Late-Pregnant Sows. Animals (Basel) 2024; 14:2054. [PMID: 39061516 PMCID: PMC11273922 DOI: 10.3390/ani14142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to determine the effects of dietary Lonicera flos and Sucutellaria baicalensis mixed extract (LSE) supplementation during the late-pregnancy period on the reproductive performance, umbilical cord blood hematological parameters, umbilical cord serum biochemical parameters, immune indices, hormone levels, colostrum ingredients, and immunoglobulin contents of sows. A total of 40 hybrid pregnant sows were randomly assigned to the control group (CON; sows fed a basal diet) and LSE group (LSE; sows fed a basal diet supplemented with 500 g/t PE). The results indicated that dietary LSE supplementation significantly increased (p < 0.05) the number of alive and healthy piglets and the litter weight at birth, and significantly increased (p < 0.05) the platelet counts in umbilical cord blood. Dietary LSE supplementation significantly increased (p < 0.05) the levels of prolactin (PRL) and growth hormone (GH), and the content of interleukin 2 (IL-2) in umbilical cord serum. Moreover, immunoglobulin A (IgA) and immunoglobulin M (IgM) in the colostrum were increased with PE supplementation (p < 0.05). In conclusion, dietary LSE supplementation in late-pregnancy sows could improve reproductive performance and colostrum quality, and could also regulate the levels of reproductive hormone in umbilical cord serum.
Collapse
Affiliation(s)
- Chengkun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Qingtai Zhang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Qifang Yu
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Shengting Deng
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Shusong Wu
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| |
Collapse
|
2
|
Bonnet A, Bluy L, Gress L, Canario L, Ravon L, Sécula A, Billon Y, Liaubet L. Sex and fetal genome influence gene expression in pig endometrium at the end of gestation. BMC Genomics 2024; 25:303. [PMID: 38515025 PMCID: PMC10958934 DOI: 10.1186/s12864-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.
Collapse
Affiliation(s)
- Agnes Bonnet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France.
| | - Lisa Bluy
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Ravon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Aurelie Sécula
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Yvon Billon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
3
|
Rodriguez-Caro F, Moore EC, Good JM. Evolution of parent-of-origin effects on placental gene expression in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554674. [PMID: 37662315 PMCID: PMC10473692 DOI: 10.1101/2023.08.24.554674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.
Collapse
|
4
|
Ni WJ, Guan XM, Zeng J, Zhou H, Meng XM, Tang LQ. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway. J Cell Mol Med 2022; 26:1144-1155. [PMID: 35001506 PMCID: PMC8831947 DOI: 10.1111/jcmm.17167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG‐induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 μmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 μmol/L) significantly reduced the expression of PI3K‐p85, p‐Akt, p‐AS160, membrane‐bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1‐mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG‐induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xi-Mei Guan
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li-Qin Tang
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Circ_0084443 Inhibits Wound Healing Via Repressing Keratinocyte Migration Through Targeting the miR-17-3p/FOXO4 Axis. Biochem Genet 2021; 60:1236-1252. [PMID: 34837127 DOI: 10.1007/s10528-021-10157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Keratinocyte migration is a crucial process during skin wound healing, and circular RNAs are associated with keratinocyte migration. The purpose of our study was to clarify the role of circ_0084443 in wound healing. The levels of circ_0084443, microRNA (miR)-17-3p, and forkhead box protein O4 (FOXO4) were examined by quantitative reverse transcription-PCR. Cell migration was detected via wound scratch assay or transwell assay. The protein expression was measured using western blot. The binding analysis between miR-17-3p and circ_0084443 or FOXO4 was determined by dual-luciferase reporter assay and RNA Immunoprecipitation assay. TGF-β1 decreased the levels of circ_0084443 and FOXO4 while increased the miR-17-3p expression in keratinocytes by a concentration-dependent manner. Circ_0084443 acted as a miR-17-3p sponge and circ_0084443 overexpression alleviated TGF-β1-induced migration of keratinocytes by sponging miR-17-3p. FOXO4 was a target for miR-17-3p. The downregulation of miR-17-3p suppressed cell migration in TGF-β1-induced cells by increasing the FOXO4 level. Circ_0084443 positively regulated the FOXO4 expression by sponging miR-17-3p. Circ_0084443 suppressed the TGFβ signaling pathway by affecting the miR-17-3p/FOXO4 axis. These results exhibited that circ_0084443 suppressed the TGF-β1-induced keratinocyte migration by regulating the miR-17-3p/FOXO4 axis, suggesting the application potential of circ_0084443 in wound-healing-related diseases.
Collapse
|