1
|
Liu Z, Xu R, Fan Y, Dong W, Han Y, Xie Q, Li J, Liu B, Wang C, Wang Y, Fu Y, Gao C. Bp-miR408a participates in osmotic and salt stress responses by regulating BpBCP1 in Betula platyphylla. TREE PHYSIOLOGY 2024; 44:tpad159. [PMID: 38145489 DOI: 10.1093/treephys/tpad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The microRNAs, which are small RNAs of 18-25 nt in length, act as key regulatory factors in posttranscriptional gene expression during plant growth and development. However, little is known about their regulatory roles in response to stressful environments in birch (Betula platyphylla). Here, we characterized and further explored miRNAs from osmotic- and salt-stressed birch. Our analysis revealed a total of 190 microRNA (miRNA) sequences, which were classified into 180 conserved miRNAs and 10 predicted novel miRNAs based on sequence homology. Furthermore, we identified Bp-miR408a under osmotic and salt stress and elucidated its role in osmotic and salt stress responses in birch. Notably, under osmotic and salt stress, Bp-miR408a contributed to osmotic and salt tolerance sensitivity by mediating various physiological changes, such as increases in reactive oxygen species accumulation, osmoregulatory substance contents and Na+ accumulation. Additionally, molecular analysis provided evidence of the in vivo targeting of BpBCP1 (blue copper protein) transcripts by Bp-miR408a. The overexpression of BpBCP1 in birch enhanced osmotic and salt tolerance by increasing the antioxidant enzyme activity, maintaining cellular ion homeostasis and decreasing lipid peroxidation and cell death. Thus, we reveal a Bp-miR408a-BpBCP1 regulatory module that mediates osmotic and salt stress responses in birch.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
- Key Laboratory of Forestry Plant Ecology, Ministry of Education (Northeast Forestry University), Harbin 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization (Northeast Forestry University), Harbin 150040, PR China
| | - Ruiting Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Yingbo Fan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Wenfang Dong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Yating Han
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| | - Yujie Fu
- Key Laboratory of Forestry Plant Ecology, Ministry of Education (Northeast Forestry University), Harbin 150040, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization (Northeast Forestry University), Harbin 150040, PR China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, PR China
| |
Collapse
|
2
|
Wang L, Lin M, Zou L, Zhang S, Lan Y, Yan H, Xiang Y. Comprehensive investigation of BZR gene family in four dicots and the function of PtBZR9 and PtBZR12 under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108360. [PMID: 38266559 DOI: 10.1016/j.plaphy.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Brassinazole-resistant (BZR) transcription factor plays an important role in plant growth and stress resistance through brassinosteroid (BR) signal transduction. However, systematic analysis of the BZR family in dicots remains limited. In this study, we conducted a genome-wide study of four typical dicots: Arabidopsis thaliana, Carica papaya, Vitis vinifera and Populus trichocarpa. Thirty-four BZR gene family members were identified and classified them into three subfamilies. Analysis of promoter and expression patterns revealed crucial role of a pair of homologous BZR genes, PtBZR9 and PtBZR12, in poplar may play a critical role under abiotic stress. PtBZR9 and PtBZR12 were localised in the nucleus and exhibited mutual interactions. Moreover, transient overexpression (OE) of PtBZR9 and PtBZR12 in poplar enhanced tolerance to drought stress. The phenotypic and physiological characteristics of PtBZR9 and PtBZR12 OE in Arabidopsis mirrored those of transient OE in the poplar. Additionally, PtBZR9 and PtBZR12 can bind to the E-box element. Under exogenous BR treatment, transgenic lines displayed a greater decrease in root length than the wild type. Thus, these findings provide a solid foundation for future research on the complex regulatory mechanisms of BZR genes.
Collapse
Affiliation(s)
- Linna Wang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Miao Lin
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Lina Zou
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yangang Lan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Dong Y, Zhang L, Chang X, Wang X, Li G, Chen S, Jin S. Overexpression of LpCPC from Lilium pumilum confers saline-alkali stress (NaHCO 3) resistance. PLANT SIGNALING & BEHAVIOR 2022; 17:2057723. [PMID: 35403568 PMCID: PMC9009912 DOI: 10.1080/15592324.2022.2057723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Lilium Pumilum with wide distribution is highly tolerant to salinity. The blue copper protein LpCPC (Lilium pumilum Cucumber Peeling Cupredoxin) gene was cloned from Lilium pumilum, which has the conserved regions of type I copper protein. Moreover, LpCPC has the closest relation to CPC from Actinidia chinensis using DNAMAN software and MEGA7 software. qRT-PCR indicated that LpCPC expression was higher in root and bulb of Lilium pumilum, and the expression of the LpCPC gene increased and reached the highest level at 12 h in bulbs under 20 mM NaHCO3. The transgenic yeast was more tolerant compared with the control under NaHCO3 stress. Compared with the wild type, overexpressing plants indicated a relatively lower degree of wilting. In addition, the chlorophyll content, soluble phenol content, and lignin content of overexpressing lines were higher than that of wild-type, whereas the relative conductivity of overexpressing plants was significantly lower than that of wild-type plants. Expression of essential genes including NHX1 and SOS1 in salt stress response pathways are steadily higher in overexpression tobacco than that in wild-types. Transgenic lines had much higher levels of CCR1 and CAD, which are involved in lignin production, compared with wild-type lines. The yeast two-hybrid technique was applied to screen probable interacting proteins interacting with LpCPC. Eight proteins interacted with LpCPC were screened, and five of which were demonstrated to be associated with plant salinity resistance. Overall, the role of gene LpCPC is mediating molecule responses in increasing saline-alkali stress resistance, indicating that it is an essential gene to enhance salt tolerance in Lilium pumilum.
Collapse
Affiliation(s)
- Yi Dong
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ling Zhang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Xu Chang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Xiaolu Wang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Guanrong Li
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Shiya Chen
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Shumei Jin
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Lan Y, Zhang K, He T, Wang H, Jiang C, Yan H, Xiang Y. Systematic analysis of the Serine/Arginine-Rich Protein Splicing Factors (SRs) and focus on salt tolerance of PtSC27 in Populus trichocarpa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:97-109. [PMID: 35121529 DOI: 10.1016/j.plaphy.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Serine/Arginine-Rich Protein Splicing Factors (SRs) are indispensable splicing factors, which play significant roles in spliceosome assembly, splicing regulation and regulation of plant stress. However, a comprehensive analysis and function research of SRs in the woody plant is still lacking. In this report, we conducted the identification and comprehensive analysis of the 71 SRs in poplar and three other dicots, including basic characterization, phylogenetic, conserved motifs, gene duplication, promoter and splice isoform of these genes. Based on the publicly available transcriptome data, expression pattern of SRs in poplar under low temperature, high temperature, drought and salt stress were further analyzed. Subsequently, a key candidate gene PtSC27 that responded to salt stress was screened. More importantly, overexpression of PtSC27 increased plant survival rate under salt stress, and enhanced salt tolerance by regulating malondialdehyde (MDA) content, peroxidase (POD) and catalase (CAT) enzyme activities in transgenic plants. Meanwhile, overexpression of PtSC27 made transgenic plants insensitive to exogenous ABA and improved the expression of some ABA signal-related genes under salt stress. Overall, our studies lay a foundation for understanding the structure and function of SRs in the poplar and provide useful gene resources for breeding through genetic engineering.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Ting He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Chengzhi Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|