1
|
Elgendy AM, Nafie MS, Nabil ZI, El-Shenawy NS, Gad El-Hak HN. Unveiling the antiurolithiatic potentiality of two benzene sulfonamide derivatives against ethylene glycol-induced renal calculi. Nefrologia 2025; 45:167-181. [PMID: 39986714 DOI: 10.1016/j.nefroe.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 02/24/2025] Open
Abstract
OBJECTIVE Oxidative stress and inflammation play crucial roles in the onset of kidney injury and crystal formation caused by hyperoxaluria. Indapamide is a potent medication for treating renal calculi, but it has severe side effects such as hypokalemia, hypercalcemia, and hyperuricemia. Therefore, it is advisable to explore alternative treatments that do not have these side effects. The study aimed to reveal the antiurolithiatic potential of two benzene sulfonamide derivatives (SBCl and SBF; A and B, respectively) against ethylene glycol-induced kidney stones. METHODS The rats were divided into two main groups: the first group consisted of 20 rats with induced kidney stones, and the second group included 15 control rats. This division enabled a comparative analysis between rats with kidney stones and those without, offering insights into the effects of kidney stone induction on various physiological parameters and biochemical markers. The effectiveness of benzene sulfonamide derivatives (compounds A and B) was assessed in rats with induced kidney stones. The treatment was given orally by gavage for 21 days, administered every 48h after inducing kidney stones with 0.12ml of 5% ethylene glycol (EG). RESULTS The influence of compounds A and B on electrolytes, biochemical, antioxidant, and inflammatory reactions in induced kidneys underscores their potential therapeutic advantages in alleviating the advancement of kidney stone disease and related complications. CONCLUSION Both compounds were found to possess equal effectiveness in inhibiting the complications of stone formation. However, SBCl-EG showed superior antioxidant and inflammatory parameters effects compared to SBF-EG. Our study's findings underscore the potential benefits of derivatives in treating nephrolithiasis and related oxidative disorders, highlighting their superior effects on antioxidant and inflammatory responses compared to standard treatments.
Collapse
Affiliation(s)
- Ahmed M Elgendy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Zohour I Nabil
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Heba N Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Ghasemi A, Ghasemi M, Rashidian M, Bastan F, Baghaei A. Efficacy of melatonin on drug- or contrast-induced acute kidney injury: a systematic review and GRADE-assessed meta-analysis of experimental and clinical studies. Int Urol Nephrol 2025:10.1007/s11255-024-04333-w. [PMID: 39786701 DOI: 10.1007/s11255-024-04333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the efficacy of melatonin in drug- or contrast-induced AKI in preclinical and clinical studies. METHODS PubMed, Embase, Scopus, Web of Science (WOS), the Cochrane Database of Systematic Reviews (CDSR), and clinical trials.GOV from the beginning until August 1, 2024. On the basis of the inclusion and exclusion criteria, the articles were included by two independent researchers. Data regarding study design, patient characteristics, the number of patients with and without AKI, and the means and SDs of the serum creatinine and BUN levels were extracted from relevant studies. STATA version 17.0 was used to compute pooled measures of standardized mean differences, standardized mean differences, risk ratios and risk differences. I2 and chi-square tests were used to assess heterogeneity between studies. Funnel plots, Egger tests and the trim-and-fill method were used to evaluate small study effects (publication bias). The risk of bias of the included clinical and preclinical studies was assessed via the Cochrane ROB tool and SYRCLE tool, respectively. The credibility of the results was evaluated via GRADE. Sensitivity analysis was performed via the one-out removal method. RESULTS We identified 1,696 nonduplicate records, of which the full texts of 159 articles were examined. Twenty-nine animal experimental studies and 5 clinical trials met the inclusion criteria and were included in the review. The results of the meta-analysis confirmed that melatonin was significantly effective at reducing the serum creatinine level (standardized mean difference: - 3.04; 95% CI - 3.904 to - 2.183, with 95% prediction interval: - 7.201 to 1.163) and the BUN level (standardized mean difference: - 3.464; 95% CI - 4.378 to - 2.549, with 95% prediction interval: - 7.839 to 0.911) in drug-induced AKI animal studies. Melatonin did not have a significant effect on the serum creatinine level (standardized mean difference: - 2.67; 95% CI - 9.69 to - 4.35, with 95% prediction interval: - 42.618 to 37.278) or the BUN level (standardized mean difference: - 1.77; 95% CI - 5.533 to - 1.994, with 95% prediction interval: -22.943 to 19.404) in contrast-induced AKI animal studies. Furthermore, in clinical studies, melatonin had no significant effect on reducing the serum creatinine level (standardized mean difference: 0.183; 95% CI - 1.309 to 1.675, with 95% prediction interval: - 7.975 to 8.340), BUN level (standardized mean difference: 0.206; 95% CI - 0.0871 to 1.283, with 95% prediction interval: - 5.115 to 5.528) or risk of AKI incidence (risk ratio: 0.877; 95% CI 0.46 to 1.64, with 95% prediction interval: - 0.238 to 3.174; risk difference: - 0.06 mg/dl; 95% CI - 0.259 to 0.40 mg/dl, with 95% prediction interval: - 0.467 to 0.348). There were no significant publication biases, and after sensitivity analysis, no considerable changes were observed, indicating the robustness of the results. CONCLUSION This meta-analysis indicates that melatonin may protect against drug-induced AKI in animal models but is not effective in clinical studies and that melatonin has no significant effect on contrast-induced AKI. Owing to the inconclusive results in clinical trials and very low certainty of evidence, further research with higher methodological quality is needed to reach a more certain conclusion.
Collapse
Affiliation(s)
- Alireza Ghasemi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Maryam Rashidian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Bastan
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Baghaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Huang Z, Deng C, Ma C, He G, Tao J, Zhang L, Hu X, Mo Y, Qiu L, Zhang N, Luo C, Xing S, Xie J, Yin H. Identification and validation of the surface proteins FIBG, PDGF-β, and TGF-β on serum extracellular vesicles for non-invasive detection of colorectal cancer: experimental study. Int J Surg 2024; 110:4672-4687. [PMID: 38704642 PMCID: PMC11326011 DOI: 10.1097/js9.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES The absence of non-invasive biomarkers for the early diagnosis of colorectal cancer (CRC) has contributed to poor prognosis. Extracellular vesicles (EVs) have emerged as promising candidates for cancer monitoring using liquid biopsy. However, the complexity of EVs isolation procedures and the absence of clear targets for detecting serum-derived EVs have hindered the clinical application of EVs in early CRC diagnosis. METHODS In the discovery phase, we conducted a comprehensive 4D-DIA proteomic analysis of serum-derived EVs samples from 37 individuals, performing an initial screening of EVs surface proteins. In the technical validation phase, we developed an extraction-free CRC-EVArray microarray to assess the expression of these potential EVs surface proteins in a multi-centre study comprising 404 individuals. In the application phase, the authors evaluated the diagnostic efficacy of the CRC-EVArray model based on machine-learning algorithms. RESULTS Through 4D-DIA proteomic analysis, the authors identified seven potential EVs surface proteins showing significantly differential expression in CRC patients compared to healthy controls. Utilizing our developed high-throughput CRC-EVArray microarray, we further confirmed the differential expression of three EVs surface proteins, FIBG, PDGF-β and TGF-β, in a large sample population. Moreover, we established an optimal CRC-EVArray model using the NNET algorithm, demonstrating superior diagnostic efficacy with an area under the curve (AUC) of 0.882 in the train set and 0.937 in the test set. Additionally, we predicted the functions and potential origins of these EVs-derived proteins through a series of multi-omics approaches. CONCLUSIONS Our systematic exploration of surface protein expression profiles on serum-derived EVs has identified FIBG, PDGF-β, and TGF-β as novel diagnostic biomarkers for CRC. The development of CRC-EVArray diagnostic model based on these findings provided an effective tool for the large-scale CRC screening, thus facilitating its translation into clinical practice.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
| | - Cuncan Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
| | - Caiqi Ma
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Guirong He
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Jian Tao
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Lijun Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Xiaoyun Hu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Yanfang Mo
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Lumei Qiu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Ningfang Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan
| | - Haofan Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| |
Collapse
|
4
|
Alqahtani LS, Alosaimi ME, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Khamis T, Noreldin AE, El-Far AH, Alotaibi BS, Hakami MA, Dahran N, Babteen NA. Acrylamide-targeting renal miR-21a-5p/Fibrotic and miR122-5p/ inflammatory signaling pathways and the role of a green approach for nano-zinc detected via in silico and in vivo approaches. Front Pharmacol 2024; 15:1413844. [PMID: 39086388 PMCID: PMC11289894 DOI: 10.3389/fphar.2024.1413844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.
Collapse
Affiliation(s)
- Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
6
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Basirat U, Bin Tariq U, Moeen N, Jawhar ZH, Shoja SJ, Kareem AK, Ramírez-Coronel AA, Romero-Parra RM, Zabibah RS, Gupta J, Mustafa YF, Farhood B. A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy. Curr Pharm Des 2023; 29:1218-1229. [PMID: 37138418 DOI: 10.2174/1381612829666230503145707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.
Collapse
Affiliation(s)
| | | | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Sarah Jawad Shoja
- College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Travagli V, Iorio EL. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. Int J Mol Sci 2023; 24:ijms24108465. [PMID: 37239818 DOI: 10.3390/ijms24108465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The ultimate objective of this review is to encourage a multi-disciplinary and integrated methodological approach that, starting from the recognition of some current uncertainties, helps to deepen the molecular bases of ozone treatment effects on human and animal well-being and to optimize their performance in terms of reproducibility of results, quality, and safety. In fact, the common therapeutic treatments are normally documented by healthcare professionals' prescriptions. The same applies to medicinal gases (whose uses are based on their pharmacological effects) that are intended for patients for treatment, diagnostic, or preventive purposes and that have been produced and inspected in accordance with good manufacturing practices and pharmacopoeia monographs. On the contrary, it is the responsibility of healthcare professionals, who thoughtfully choose to use ozone as a medicinal product, to achieve the following objectives: (i) to understand the molecular basis of the mechanism of action; (ii) to adjust the treatment according to the clinical responses obtained in accordance with the principles of precision medicine and personalized therapy; (iii) to ensure all quality standards.
Collapse
Affiliation(s)
- Valter Travagli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Viale Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Luigi Iorio
- International Observatory of Oxidative Stress, 84127 Salerno, Italy
- Campus Uberlândia, Universidade de Uberaba (UNIUBE), Uberlândia 38055-500, Brazil
| |
Collapse
|
10
|
Ai Z, Wang M, Zhou Y, Yuan D, Jian Q, Wu S, Liu B, Yang Y. Deciphering the pharmacological mechanisms of Rostellularia procumbens (L) Nees. Extract alleviates adriamycin-induced nephropathy in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154736. [PMID: 36907143 DOI: 10.1016/j.phymed.2023.154736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Rostellularia procumbens (L) Nees. is an effective traditional Chinese herbal medicine for the treatment of patients with chronic glomerulonephritis (CGN) in the clinic. However, the underlying molecular mechanisms need further elucidation. PURPOSE This study aims to investigate the renoprotective mechanisms of n-butanol extract from Rostellularia procumbens (L) Nees. (J-NE) in vivo and in vitro. METHODS The components of J-NE were analyzed by UPLC-MS/MS. In vivo, the nephropathy model was induced in mice by tail vein injection with adriamycin (10 mg·kg-1), and mice were treated with vehicle or J-NE or benazepril by daily gavage. In vitro, MPC5 cells exposed to adriamycin (0.3 μg/ml) were treated with J-NE. The effects of J-NE inhibit podocyte apoptosis and protect against adriamycin-induced nephropathy were determined by Network pharmacology, RNA-seq, qPCR, ELISA, immunoblotting, flow cytometry, and TUNEL assay, according to the experimental protocols. RESULT The results showed that treatment significantly improved ADR-induced renal pathological changes, and the therapeutic mechanism of J-NE was related to the inhibition of podocyte apoptosis. Further molecular mechanism studies found that J-NE inhibited inflammation, increase the proteins expression levels of Nephrin and Podocin, reduce TRPC6 and Desmin expression levels and calcium ion levels in podocytes, and decrease the proteins expression levels of PI3K, p-PI3K, Akt and p-Akt to attenuated apoptosis. Furthermore, 38 compounds of J-NE were identified. CONCLUSION J-NE exerted the renoprotective effects by inhibiting podocyte apoptosis, which provides effective evidence for the treatment of J-NE targeting renal injury in CGN.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Mengfan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yi Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiuyuan Jian
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Songtao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China.
| |
Collapse
|
11
|
Delgadillo-Valero LF, Hernández-Cruz EY, Pedraza-Chaverri J. The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life (Basel) 2023; 13:life13030752. [PMID: 36983907 PMCID: PMC10057350 DOI: 10.3390/life13030752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Ozone (O3) is a reactive oxygen species (ROS) that can interact with cellular components and cause oxidative stress. Following said logic, if O3 induces such a stressful milieu, how does it exert antioxidant functions? This is mediated by controlled toxicity produced by low concentrations of O3, which enhance the cell’s suppliance of antioxidant properties without causing any further damage. Therapeutic concentrations vary extensively, although 50 µg/mL is commonly used in experimental and clinical procedures, given that augmented concentrations might work as germicides or cause endogenous damage. O3 therapy has been shown to be effective when applied before or after traumatic renal procedures, whether caused by ischemia, xenobiotics, chronic damage, or other models. In this review, we focus on discussing the role of O3 therapy in different models of kidney damage associated with fibrosis, apoptosis, oxidative stress, and inflammation. We integrate and report knowledge about O3 in renal therapy, debunking skepticism towards unconventional medicine, explaining its proven therapeutic properties, and thus providing background for its use in further research as well as in clinical settings.
Collapse
Affiliation(s)
- Luis Fernando Delgadillo-Valero
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
12
|
Gaudji GR, Bida M, Conradie M, Damane BP, Bester MJ. Renal Papillary Necrosis (RPN) in an African Population: Disease Patterns, Relevant Pathways, and Management. Biomedicines 2022; 11:biomedicines11010093. [PMID: 36672600 PMCID: PMC9855351 DOI: 10.3390/biomedicines11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Renal papillary necrosis (RPN) is characterized by coagulative necrosis of the renal medullary pyramids and papillae. Multiple conditions and toxins are associated with RPN. Several RPN risk factors, or POSTCARDS, have been identified, with most patients presenting with RPN having at least two contributing risk factors. Currently, there is no specific test to diagnose and confirm RPN; however, several imaging tools can be used to diagnose the condition. RPN is currently underdiagnosed in African populations, often with fatal outcomes. In African clinical settings, there is a lack of consensus on how to define and describe RPN in terms of kidney anatomy, pathology, endourology, epidemiology, the identification of African-specific risk factors, the contribution of oxidative stress, and lastly an algorithm for managing the condition. Several risk factors are unique to African populations including population-specific genetic factors, iatrogenic factors, viral infections, antimicrobial therapy, schistosomiasis, substance abuse, and hypertension (GIVASSH). Oxidative stress is central to both GIVASSH and POSTCARDS-associated risk factors. In this review, we present information specific to African populations that can be used to establish an updated consensual definition and practical grading system for radiologists, urologists, nephrologists, nuclear physicians, and pathologists in African clinical settings.
Collapse
Affiliation(s)
- Guy Roger Gaudji
- Department of Urology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
- Correspondence: (G.R.G.); (M.J.B.)
| | - Meshack Bida
- Department of Anatomical Pathology, National Health Laboratory Service (NHLS), Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Marius Conradie
- Urology Practice, Netcare Waterfall City Hospital, Cnr Magwa Avenue and Mac Mac Road, Johannesburg 1682, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
- Correspondence: (G.R.G.); (M.J.B.)
| |
Collapse
|
13
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.E.); (S.C.)
| |
Collapse
|
14
|
DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr 2022; 10:853722. [PMID: 35844742 PMCID: PMC9279889 DOI: 10.3389/fped.2022.853722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress occurs when there is an imbalance between reactive oxygen species/reactive nitrogen species and antioxidant systems. The interplay between these complex processes is crucial for normal pregnancy and fetal development; however, when oxidative stress predominates, pregnancy related complications and adverse fetal programming such as preterm birth ensues. Understanding how oxidative stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the exploration of antioxidant therapies to prevent and/or mitigate disease progression. In the developing kidney, the negative impact of oxidative stress has also been noted as it relates to the development of hypertension and kidney injury mostly in animal models. Clinical research addressing the implications of oxidative stress in the developing kidney is less developed than that of the neurodevelopmental and respiratory conditions of preterm infants and other vulnerable neonatal groups. Efforts to study the oxidative stress pathway along the continuum of the perinatal period using a team science approach can help to understand the multi-organ dysfunction that the maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to ameliorate the global toxicity. This educational review will provide a comprehensive and multidisciplinary perspective on the impact of oxidative stress during the perinatal period in the development of maternal and fetal/neonatal complications, and implications on developmental programming of accelerated aging and cardiovascular and renal disease for a lifetime.
Collapse
Affiliation(s)
- Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States.,Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Hyunyoung Ahn
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Anna Sfakianaki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States.,Department of Pediatrics, Batchelor Children's Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|