1
|
Zhu K, He H, Guo H, Liu B, He X, Zhang N, Xian L, Zhang D. Identification of two MEF2s and their role in inhibiting the transcription of the mstn2a gene in the yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Gene 2024; 909:148322. [PMID: 38423140 DOI: 10.1016/j.gene.2024.148322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-β superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Xin He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China.
| |
Collapse
|
2
|
Guo J, Guo H, Chen C, Yu F, Liu B, Zhang N, Xian L, Luo Z, Liu W, Zhu K, Zhang D. Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782). Genes (Basel) 2023; 14:2142. [PMID: 38136962 PMCID: PMC10742913 DOI: 10.3390/genes14122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Myostatin (mstn), also known as GDF8, is a growth and differentiation factor of the transforming growth factor-β (TGF-β) superfamily and plays a key inhibitory effect in the regulation of skeletal muscle development and growth in vertebrates. In the present study, to comprehend the role of the mstn2 gene of the yellowfin seabream Acanthopagrus latus (Almstn2b), the genomic sequence of Almstn2b is 2359 bp, which encodes 360 amino acids and is composed of three exons and two introns, was obtained. Two typical regions, a TGF-β propeptide and TGF-β domain, constitute Almstn2b. The topology indicated that Almstn2 was grouped together with other Perciformes, such as the gilthead seabream Sparus aurata. Moreover, Almstn2b was mainly expressed in the brain, fins, and spleen. Furthermore, five SNPs, one in the exons and four in the introns, were identified in the Almstn2b gene. The allele and genotype frequencies of SNP-Almstn2b +1885 A/G were significantly related to the total weight, interorbital distance, stem length, tail length, caudal length, caudal height, body length, and total length (p < 0.05). The allele and genotype frequencies of SNP-Almstn2b +1888 A/G were significantly related to the weight, interorbital distance, long head behind the eyes, body height, tail length, caudal length, and body length. Additionally, the relationship between the SNP-Almstn2b +1915 A/G locus and weight and long head behind the eyes was significant (p < 0.05). Furthermore, the other two SNPs were not significantly associated with any traits. Thus, the SNPs identified in this study could be utilized as candidate SNPs for breeding and marker-assisted selection in A. latus.
Collapse
Affiliation(s)
- Jianyi Guo
- Modern Agricultural Development Center of Zhuhai City, Zhuhai 519000, China; (J.G.); (C.C.); (F.Y.); (Z.L.); (W.L.)
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Guangzhou 510300, China; (H.G.); (B.L.); (N.Z.); (L.X.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanghua Chen
- Modern Agricultural Development Center of Zhuhai City, Zhuhai 519000, China; (J.G.); (C.C.); (F.Y.); (Z.L.); (W.L.)
| | - Fangzhao Yu
- Modern Agricultural Development Center of Zhuhai City, Zhuhai 519000, China; (J.G.); (C.C.); (F.Y.); (Z.L.); (W.L.)
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Guangzhou 510300, China; (H.G.); (B.L.); (N.Z.); (L.X.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Guangzhou 510300, China; (H.G.); (B.L.); (N.Z.); (L.X.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Guangzhou 510300, China; (H.G.); (B.L.); (N.Z.); (L.X.)
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Zhiping Luo
- Modern Agricultural Development Center of Zhuhai City, Zhuhai 519000, China; (J.G.); (C.C.); (F.Y.); (Z.L.); (W.L.)
| | - Wen Liu
- Modern Agricultural Development Center of Zhuhai City, Zhuhai 519000, China; (J.G.); (C.C.); (F.Y.); (Z.L.); (W.L.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Guangzhou 510300, China; (H.G.); (B.L.); (N.Z.); (L.X.)
| | - Dianchang Zhang
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|