1
|
Korak T, Bal Albayrak MG, Kasap M, Akpinar G. Thymoquinone and Metabolic Reprogramming in Breast Cancer: A New Dimension From Proteomic Analysis. J Biochem Mol Toxicol 2025; 39:e70124. [PMID: 39749682 DOI: 10.1002/jbt.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h. Proteins from treated and untreated (control) groups were isolated and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis. Identified proteins were functionally annotated, with hub proteins identified using Cytoscape software, and verification conducted through Western blot analysis. Label-free quantitation identified 629 master proteins, with 104 upregulated and 477 downregulated in TQ-treated samples compared to controls. Among these, 150 proteins showed dramatic regulation, including 11 upregulated and 139 downregulated proteins, with ribosomal proteins emerging as central. The heatmap demonstrated robust clustering of replicates. Functional annotations indicated that TQ significantly impacts crucial mechanisms such as carbon metabolism, amino acid biosynthesis, protein synthesis, and the citrate cycle, essential for metabolic reprogramming. This study identifies novel molecular targets associated with metabolic reprogramming, previously underexplored in TQ's effects, highlighting their pivotal role in TQ's anticancer mechanisms in breast cancer. These findings could lay the groundwork for developing future TQ-based therapies.
Collapse
Affiliation(s)
- Tuğcan Korak
- Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | | | - Murat Kasap
- Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
2
|
Aljohani Y, Payne W, Yasuda RP, Olson T, Kellar KJ, Dezfuli G. Pharmacological target sites for restoration of age-associated deficits in NMDA receptor-mediated norepinephrine release in brain. J Neurochem 2025; 169:e16280. [PMID: 39655655 PMCID: PMC11629444 DOI: 10.1111/jnc.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE). Previous studies from our lab demonstrated that the age-associated decline in Glu-stimulated NE release in rat cerebral cortex and hippocampus mediated by NMDA glutamate receptors, as well as deficits in dendritic spines, and cognitive functions are fully rescued by the CNS stimulant amphetamine. Here we further investigated Glu-stimulated NE release in the cerebral cortex to identify additional novel target sites for restoration of Glu-stimulated NE release. We found that blockade of alpha-2 adrenergic receptors fully restores Glu-stimulated NE release to the levels of young controls. In addition, we investigated the density and responsiveness of NMDA receptors as a potential underlying neuronal mechanism that could account for the observed age-associated decline in Glu-stimulated NE release. In the basal state of the receptor (no added glutamate and glycine) the density of NMDA receptors in the cortex from young and aged rats was similar. However, in contrast, in the presence of 10 μM added glutamate, which opens the receptor channel and increases the number of available [3H]-MK-801 binding sites within the channel, the density of [3H]-MK-801 binding sites was significantly less in the cortex from aged rats.
Collapse
Affiliation(s)
- Yousef Aljohani
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - William Payne
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Robert P. Yasuda
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Thao Olson
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Kenneth J. Kellar
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
3
|
Adami R, Pezzotta M, Cadile F, Cuniolo B, Rovati G, Canepari M, Bottai D. Physiological Features of the Neural Stem Cells Obtained from an Animal Model of Spinal Muscular Atrophy and Their Response to Antioxidant Curcumin. Int J Mol Sci 2024; 25:8364. [PMID: 39125934 PMCID: PMC11313061 DOI: 10.3390/ijms25158364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.
Collapse
Affiliation(s)
- Raffaella Adami
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Matteo Pezzotta
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Francesca Cadile
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Beatrice Cuniolo
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Gianenrico Rovati
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| | - Monica Canepari
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy; (F.C.); (M.C.)
| | - Daniele Bottai
- Section of Pharmacology and Biosciences, Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (R.A.); (M.P.); (B.C.); (G.R.)
| |
Collapse
|
4
|
Sule R, Rivera G, Gomes AV. Western blotting (immunoblotting): history, theory, uses, protocol and problems. Biotechniques 2023; 75:99-114. [PMID: 36971113 DOI: 10.2144/btn-2022-0034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Western blotting (immunoblotting) is a powerful and commonly used technique that is capable of detecting or semiquantifying an individual protein from complex mixtures of proteins extracted from cells or tissues. The history surrounding the origin of western blotting, the theory behind the western blotting technique, a comprehensive protocol and the uses of western blotting are presented. Lesser known and significant problems in the western blotting field and troubleshooting of common problems are highlighted and discussed. This work is a comprehensive primer and guide for new western blotting researchers and those interested in a better understanding of the technique or getting better results.
Collapse
Affiliation(s)
- Rasheed Sule
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Gabriela Rivera
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
A critical path to producing high quality, reproducible data from quantitative western blot experiments. Sci Rep 2022; 12:17599. [PMID: 36266411 PMCID: PMC9585080 DOI: 10.1038/s41598-022-22294-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Western blotting experiments were initially performed to detect a target protein in a complex biological sample and more recently, to measure relative protein abundance. Chemiluminescence coupled with film-based detection was traditionally the gold standard for western blotting but accurate and reproducible quantification has been a major challenge from this methodology. The development of sensitive, camera-based detection technologies coupled with an updated technical approach permits the production of reproducible, quantitative data. Fluorescence reagent and detection solutions are the latest innovation in western blotting but there remains questions and debate concerning their relative sensitivity and dynamic range versus chemiluminescence. A methodology to optimize and produce excellent, quantitative western blot results with rigorous data analysis from membranes probed with both fluorescent and chemiluminescent antibodies is described. The data reveal when and how to apply these detection methods to achieve reproducible data with a stepwise approach to data processing for quantitative analysis.
Collapse
|
6
|
Zhai C, Huff-Lonergan EJ, Lonergan SM, Nair MN. Housekeeping Proteins in Meat Quality Research: Are They Reliable Markers for Internal Controls in Western Blot? A Mini Review. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advancements in technology and analytical methods enable researchers to explore the biochemical events that cause variation in meat quality. Among those, western blot techniques have been successfully used in identifying and quantifying the key proteins that have critical functions in the development of meat quality. Housekeeping proteins, like β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and tubulins are often used as internal controls in western blots to normalize the abundance of the protein of interest. However, there are increasing concerns about using housekeeping proteins for western blot normalization, as these proteins do not demonstrate any loading differences above the relatively small total protein loading amounts of 10μg. In addition, the interaction between these housekeeping proteins and programmed cell death processes highlights the concerns about using the housekeeping protein as the internal control in meat quality research. Moreover, recent proteomic research has indicated that the abundance of some housekeeping proteins, like β-actin, GAPDH, and tubulin, can be altered by preslaughter stress, dietary supplementation, sex, slaughter method, genotype, breed, aging period, muscle type, and muscle portion. Furthermore, these housekeeping proteins could have differential expression in meat with differing color stability, tenderness, and water holding capacity. Therefore, this review aims to examine the realities of using housekeeping proteins as the loading control in meat quality research and introduce some alternative methods that can be used for western blot normalization.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Colorado State University Department of Animal Sciences
| | | | | | | |
Collapse
|
7
|
Effectively controlling the ESIPT behavior and fluorescence feature of 2-(2′-hydroxyphenyl)-4-chloromethylthiazole by changing its π-conjugation: A theoretical exploration. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|