1
|
Equestre M, Marcantonio C, Marascio N, Centofanti F, Martina A, Simeoni M, Suffredini E, La Rosa G, Bonanno Ferraro G, Mancini P, Veneri C, Matera G, Quirino A, Costantino A, Taffon S, Tritarelli E, Campanella C, Pisani G, Nisini R, Spada E, Verde P, Ciccaglione AR, Bruni R. Characterization of SARS-CoV-2 Variants in Military and Civilian Personnel of an Air Force Airport during Three Pandemic Waves in Italy. Microorganisms 2023; 11:2711. [PMID: 38004723 PMCID: PMC10672769 DOI: 10.3390/microorganisms11112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated SARS-CoV-2 variants circulating, from November 2020 to March 2022, among military and civilian personnel at an Air Force airport in Italy in order to classify viral isolates in a potential hotspot for virus spread. Positive samples were subjected to Next-Generation Sequencing (NGS) of the whole viral genome and Sanger sequencing of the spike coding region. Phylogenetic analysis classified viral isolates and traced their evolutionary relationships. Clusters were identified using 70% cut-off. Sequencing methods yielded comparable results in terms of variant classification. In 2020 and 2021, we identified several variants, including B.1.258 (4/67), B.1.177 (9/67), Alpha (B.1.1.7, 9/67), Gamma (P.1.1, 4/67), and Delta (4/67). In 2022, only Omicron and its sub-lineage variants were observed (37/67). SARS-CoV-2 isolates were screened to detect naturally occurring resistance in genomic regions, the target of new therapies, comparing them to the Wuhan Hu-1 reference strain. Interestingly, 2/30 non-Omicron isolates carried the G15S 3CLpro substitution responsible for reduced susceptibility to protease inhibitors. On the other hand, Omicron isolates carried unusual substitutions A1803V, D1809N, and A949T on PLpro, and the D216N on 3CLpro. Finally, the P323L substitution on RdRp coding regions was not associated with the mutational pattern related to polymerase inhibitor resistance. This study highlights the importance of continuous genomic surveillance to monitor SARS-CoV-2 evolution in the general population, as well as in restricted communities.
Collapse
Affiliation(s)
- Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Cinzia Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Federica Centofanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Antonio Martina
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Matteo Simeoni
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Costantino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Stefania Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Elena Tritarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Carmelo Campanella
- Clinical Analysis and Molecular Biology Laboratory Rome, Institute of Aerospace Medicine, 00185 Rome, Italy;
| | - Giulio Pisani
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Enea Spada
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Paola Verde
- Aerospace Medicine Department, Aerospace Test Division, Militay Airport Mario De Bernardi, Pratica di Mare, 00040 Rome, Italy;
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| |
Collapse
|
2
|
Morazán-Fernández D, Mora J, Molina-Mora JA. In Silico Pipeline to Identify Tumor-Specific Antigens for Cancer Immunotherapy Using Exome Sequencing Data. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:130-137. [PMID: 37197645 PMCID: PMC10110822 DOI: 10.1007/s43657-022-00084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 05/19/2023]
Abstract
Tumor-specific antigens or neoantigens are peptides that are expressed only in cancer cells and not in healthy cells. Some of these molecules can induce an immune response, and therefore, their use in immunotherapeutic strategies based on cancer vaccines has been extensively explored. Studies based on these approaches have been triggered by the current high-throughput DNA sequencing technologies. However, there is no universal nor straightforward bioinformatic protocol to discover neoantigens using DNA sequencing data. Thus, we propose a bioinformatic protocol to detect tumor-specific antigens associated with single nucleotide variants (SNVs) or "mutations" in tumoral tissues. For this purpose, we used publicly available data to build our model, including exome sequencing data from colorectal cancer and healthy cells obtained from a single case, as well as frequent human leukocyte antigen (HLA) class I alleles in a specific population. HLA data from Costa Rican Central Valley population was selected as an example. The strategy included three main steps: (1) pre-processing of sequencing data; (2) variant calling analysis to detect tumor-specific SNVs in comparison with healthy tissue; and (3) prediction and characterization of peptides (protein fragments, the tumor-specific antigens) derived from the variants, in the context of their affinity with frequent alleles of the selected population. In our model data, we found 28 non-silent SNVs, present in 17 genes in chromosome one. The protocol yielded 23 strong binders peptides derived from the SNVs for frequent HLA class I alleles for the Costa Rican population. Although the analyses were performed as an example to implement the pipeline, to our knowledge, this is the first study of an in silico cancer vaccine using DNA sequencing data in the context of the HLA alleles. It is concluded that the standardized protocol was not only able to identify neoantigens in a specific but also provides a complete pipeline for the eventual design of cancer vaccines using the best bioinformatic practices. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00084-9.
Collapse
Affiliation(s)
| | - Javier Mora
- Centro de Investigación de Enfermedades Tropicales, Centro de Investigación en Cirugía y Cáncer, and Facultad de Microbiología, Universidad de Costa Rica, San José, 2060 Costa Rica
| | - Jose Arturo Molina-Mora
- Centro de Investigación de Enfermedades Tropicales, Centro de Investigación en Cirugía y Cáncer, and Facultad de Microbiología, Universidad de Costa Rica, San José, 2060 Costa Rica
| |
Collapse
|
3
|
LaRotta J, Escobar O, Ávila-Aguero ML, Torres JP, Sini de Almeida R, Morales GDC, Srivastava A. COVID-19 in Latin America: A Snapshot in Time and the Road Ahead. Infect Dis Ther 2023; 12:389-410. [PMID: 36633818 PMCID: PMC9835740 DOI: 10.1007/s40121-022-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Since its initial detection in Brazil in February 2020, SARS-CoV-2 and the associated COVID-19 pandemic have continued to devastate Latin America. Specific comorbidities, as well as sociodemographic and lifestyle factors that may be more prevalent in underserved areas, have been identified as risk factors for COVID-19 infection or associated adverse outcomes. Dynamics of infections and deaths in Latin America have varied by country and temporally, as has SARS-CoV-2 variant prevalence; however, more recently, the Delta and subsequent Omicron variants have become ubiquitous. Successful pandemic responses have involved robust infection mitigation measures, testing, and smart deployment of healthcare resourcing. While in some Latin American countries up to 90% of the population is fully vaccinated (i.e., 2 doses) against COVID-19, other countries have failed to reach the World Health Organization's 70% target. Continued focus on comprehensive surveillance, strategies to maximize vaccine availability and uptake, and mitigation of collateral damage on other aspects of public health and social services are critical for managing the COVID-19 pandemic. This review summarizes the COVID-19 experience in Latin America, including epidemiology and vaccination. Key learnings and future considerations for the ongoing pandemic response are also discussed.
Collapse
Affiliation(s)
- Jorge LaRotta
- Vaccines Medical and Scientific Affairs, Pfizer SAS, AV Suba 95-66, Bogotá, Colombia.
| | - Omar Escobar
- Vaccines Medical and Scientific Affairs, Pfizer SAS, AV Suba 95-66, Bogotá, Colombia
| | - María L Ávila-Aguero
- Pediatric Infectious Diseases, Hospital Nacional de Niños, San José, Costa Rica
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, CT, USA
| | - Juan Pablo Torres
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Amit Srivastava
- Vaccines, Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
4
|
Computational Design and Experimental Evaluation of MERS-CoV siRNAs in Selected Cell Lines. Diagnostics (Basel) 2023; 13:diagnostics13010151. [PMID: 36611443 PMCID: PMC9818142 DOI: 10.3390/diagnostics13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.
Collapse
|
5
|
Molina-Mora JA, Reales-González J, Camacho E, Duarte-Martínez F, Tsukayama P, Soto-Garita C, Brenes H, Cordero-Laurent E, Ribeiro dos Santos A, Guedes Salgado C, Santos Silva C, Santana de Souza J, Nunes G, Negri T, Vidal A, Oliveira R, Oliveira G, Muñoz-Medina JE, Salas-Lais AG, Mireles-Rivera G, Sosa E, Turjanski A, Monzani MC, Carobene MG, Remes Lenicov F, Schottlender G, Fernández Do Porto DA, Kreuze JF, Sacristán L, Guevara-Suarez M, Cristancho M, Campos-Sánchez R, Herrera-Estrella A. Overview of the SARS-CoV-2 genotypes circulating in Latin America during 2021. Front Public Health 2023; 11:1095202. [PMID: 36935725 PMCID: PMC10018007 DOI: 10.3389/fpubh.2023.1095202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- *Correspondence: Jose Arturo Molina-Mora
| | | | - Erwin Camacho
- Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Francisco Duarte-Martínez
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Pablo Tsukayama
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Claudio Soto-Garita
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Hebleen Brenes
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | - Estela Cordero-Laurent
- Laboratorio de Genómica y Biología Molecular, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Tres Ríos, Cartago, Costa Rica
| | | | | | - Caio Santos Silva
- Instituto de Ciências Biológica, Universidade Federal do Pará, Belém, Brazil
| | | | - Gisele Nunes
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Tatianne Negri
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Amanda Vidal
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Renato Oliveira
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - Guilherme Oliveira
- Environmental Genomics, Vale Institute of Technology, Belém, Pará, Brazil
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Angel Gustavo Salas-Lais
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Guadalupe Mireles-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Ezequiel Sosa
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián Turjanski
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Monzani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio G. Carobene
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Schottlender
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Luisa Sacristán
- Vicerrectoria de Investigación y Creación, Universidad de Los Andes, Bogotá, Colombia
| | | | - Marco Cristancho
- Vicerrectoria de Investigación y Creación, Universidad de Los Andes, Bogotá, Colombia
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
- Alfredo Herrera-Estrella
| |
Collapse
|
6
|
Halfmann PJ, Minor NR, Haddock III LA, Maddox R, Moreno GK, Braun KM, Baker DA, Riemersa KK, Prasad A, Alman KJ, Lambert MC, Florek K, Bateman A, Westergaard R, Safdar N, Andes DR, Kawaoka Y, Fida M, Yao JD, Friedrich TC, O’Connor DH. Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal antibody escape mutation in a persistently infected, immunocompromised individual. Virus Evol 2022; 9:veac104. [PMID: 37692895 PMCID: PMC10491860 DOI: 10.1093/ve/veac104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 09/12/2023] Open
Abstract
Prolonged infections in immunocompromised individuals may be a source for novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, particularly when both the immune system and antiviral therapy fail to clear the infection and enable within-host evolution. Here we describe a 486-day case of SARS-CoV-2 infection in an immunocompromised individual. Following monotherapy with the monoclonal antibody Bamlanivimab, the individual's virus acquired resistance, likely via the earliest known occurrence of Spike amino acid variant E484T. Recently, E484T has arisen again as a derivative of E484A in the Omicron Variant of Concern, supporting the hypothesis that prolonged infections can give rise to novel variants long before they become prevalent in the human population.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Nicholas R Minor
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Luis A Haddock III
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Robert Maddox
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Gage K Moreno
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - David A Baker
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Kasen K Riemersa
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Ankur Prasad
- Division of Allergy, Pulmonary and Critical Care Medicine, School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705-2281, USA
| | - Kirsten J Alman
- University of Wisconsin Division of Infectious Disease, Room 5275-07C, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Matthew C Lambert
- University of Wisconsin Division of Infectious Disease, Room 5275-07C, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Kelsey Florek
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, PO Box 7996, Madison, WI 53707, USA
| | - Allen Bateman
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, PO Box 7996, Madison, WI 53707, USA
| | - Ryan Westergaard
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Nasia Safdar
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - David R Andes
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Madiha Fida
- Division of Infectious Diseases, Mayo Clinic, 200 First St. SW, Rochester, Rochester, Minnesota 55905, USA
| | - Joseph D Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - David H O’Connor
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
7
|
Molina-Mora JA, González A, Jiménez-Morgan S, Cordero-Laurent E, Brenes H, Soto-Garita C, Sequeira-Soto J, Duarte-Martínez F. Clinical Profiles at the Time of Diagnosis of SARS-CoV-2 Infection in Costa Rica During the Pre-vaccination Period Using a Machine Learning Approach. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:312-322. [PMID: 35692458 PMCID: PMC9173838 DOI: 10.1007/s43657-022-00058-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 04/16/2023]
Abstract
The clinical manifestations of COVID-19, caused by the SARS-CoV-2, define a large spectrum of symptoms that are mainly dependent on the human host conditions. In Costa Rica, more than 169,000 cases and 2185 deaths were reported during the year 2020, the pre-vaccination period. To describe the clinical presentations at the time of diagnosis of SARS-CoV-2 infection in Costa Rica during the pre-vaccination period, we implemented a symptom-based clustering using machine learning to identify clusters or clinical profiles at the population level among 18,974 records of positive cases. Profiles were compared based on symptoms, risk factors, viral load, and genomic features of the SARS-CoV-2 sequence. A total of 18 symptoms at time of diagnosis of SARS-CoV-2 infection were reported with a frequency > 1%, and those were used to identify seven clinical profiles with a specific composition of clinical manifestations. In the comparison between clusters, a lower viral load was found for the asymptomatic group, while the risk factors and the SARS-CoV-2 genomic features were distributed among all the clusters. No other distribution patterns were found for age, sex, vital status, and hospitalization. In conclusion, during the pre-vaccination time in Costa Rica, the symptoms at the time of diagnosis of SARS-CoV-2 infection were described in clinical profiles. The host co-morbidities and the SARS-CoV-2 genotypes are not specific of a particular profile, rather they are present in all the groups, including asymptomatic cases. In addition, this information can be used for decision-making by the local healthcare institutions (first point of contact with health professionals, case definition, or infrastructure). In further analyses, these results will be compared against the profiles of cases during the vaccination period. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00058-x.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San José, 2060 Costa Rica
| | - Alejandra González
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| | | | - Estela Cordero-Laurent
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| | - Hebleen Brenes
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| | - Claudio Soto-Garita
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| | - Jorge Sequeira-Soto
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| | - Francisco Duarte-Martínez
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, 30301 Costa Rica
| |
Collapse
|
8
|
Schiavina M, Pontoriero L, Tagliaferro G, Pierattelli R, Felli IC. The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Biomolecules 2022; 12:1302. [PMID: 36139141 PMCID: PMC9496478 DOI: 10.3390/biom12091302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Novel and efficient strategies need to be developed to interfere with the SARS-CoV-2 virus. One of the most promising pharmaceutical targets is the nucleocapsid protein (N), responsible for genomic RNA packaging. N is composed of two folded domains and three intrinsically disordered regions (IDRs). The globular RNA binding domain (NTD) and the tethered IDRs are rich in positively charged residues. The study of the interaction of N with polyanions can thus help to elucidate one of the key driving forces responsible for its function, i.e., electrostatics. Heparin, one of the most negatively charged natural polyanions, has been used to contrast serious cases of COVID-19 infection, and we decided to study its interaction with N at the molecular level. We focused on the NTR construct, which comprises the NTD and two flanking IDRs, and on the NTD construct in isolation. We characterized this interaction using different nuclear magnetic resonance approaches and isothermal titration calorimetry. With these tools, we were able to identify an extended surface of NTD involved in the interaction. Moreover, we assessed the importance of the IDRs in increasing the affinity for heparin, highlighting how different tracts of these flexible regions modulate the interaction.
Collapse
Affiliation(s)
| | | | | | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Isabella C. Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Mishra S. Computational Structural and Functional Analyses of ORF10 in Novel Coronavirus SARS-CoV-2 Variants to Understand Evolutionary Dynamics. Evol Bioinform Online 2022; 18:11769343221108218. [PMID: 35909986 PMCID: PMC9336178 DOI: 10.1177/11769343221108218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: In an effort to combat SARS-CoV-2 through multi-subunit vaccine design,
during studies using whole genome and immunome, ORF10, located at the 3′ end
of the genome, displayed unique features. It showed no homology to any known
protein in other organisms, including SARS-CoV. It was observed that its
nucleotide sequence is 100% identical in the SARS-CoV-2 genomes sourced
worldwide, even in the recent-most VoCs and VoIs of B.1.1.529 (Omicron),
B.1.617 (Delta), B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma) lineages,
implicating its constant nature throughout the evolution of deadly
variants. Aim: The structure and function of SARS-CoV-2 ORF10 and the role it may play in
the viral evolution is yet to be understood clearly. The aim of this study
is to predict its structure, function, and understand evolutionary dynamics
on the basis of mutations and likely heightened immune responses in the
immunopathogenesis of this deadly virus. Methods: Sequence analysis, ab-initio structure modeling and an understanding of the
impact of likely substitutions in key regions of protein was carried out.
Analyses of viral T cell epitopes and primary anchor residue mutations was
done to understand the role it may play in the evolution as a molecule with
likely enhanced immune response and consequent immunopathogenesis. Results: Few amino acid substitution mutations are observed, most probably due to the
ribosomal frameshifting, and these mutations may not be detrimental to its
functioning. As ORF10 is observed to be an expressed protein, ab-initio
structure modeling shows that it comprises mainly an α-helical region and
maybe an ER-targeted membrane mini-protein. Analyzing the whole proteome, it
is observed that ORF10 presents amongst the highest number of likely
promiscuous and immunogenic CTL epitopes, specifically 11 out of 30
promiscuous ones and 9 out of these 11, immunogenic CTL epitopes. Reactive T
cells to these epitopes have been uncovered in independent studies. Majority
of these epitopes are located on the α-helix region of its structure, and
the substitution mutations of primary anchor residues in these epitopes do
not affect immunogenicity. Its conserved nucleotide sequence throughout the
evolution and diversification of virus into several variants is a puzzle yet
to be solved. Conclusions: On the basis of its sequence, structure, and epitope mapping, it is concluded
that it may function like those mini-proteins used to boost immune responses
in medical applications. Due to the complete nucleotide sequence
conservation even a few years after SARS-CoV-2 genome was first sequenced,
it poses a unique puzzle to be solved, in view of the evolutionary dynamics
of variants emerging in the populations worldwide.
Collapse
Affiliation(s)
- Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Ylikoski J, Lehtimäki J, Pääkkönen R, Mäkitie A. Prevention and Treatment of Life-Threatening COVID-19 May Be Possible with Oxygen Treatment. Life (Basel) 2022; 12:754. [PMID: 35629421 PMCID: PMC9142938 DOI: 10.3390/life12050754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Most SARS CoV-2 infections probably occur unnoticed or cause only cause a mild common cold that does not require medical intervention. A significant proportion of more severe cases is characterized by early neurological symptoms such as headache, fatigue, and impaired consciousness, including respiratory distress. These symptoms suggest hypoxia, specifically affecting the brain. The condition is best explained by primary replication of the virus in the nasal respiratory and/or the olfactory epithelia, followed by an invasion of the virus into the central nervous system, including the respiratory centers, either along a transneural route, through disruption of the blood-brain barrier, or both. In patients, presenting with early dyspnea, the primary goal of therapy should be the reversal of brain hypoxia as efficiently as possible. The first approach should be intermittent treatment with 100% oxygen using a tight oronasal mask or a hood. If this does not help within a few hours, an enclosure is needed to increase the ambient pressure. This management approach is well established in the hypoxia-related diseases in diving and aerospace medicine and preserves the patient's spontaneous breathing. Preliminary research evidence indicates that even a small elevation of the ambient pressure might be lifesaving. Other neurological symptoms, presenting particularly in long COVID-19, suggest imbalance of the autonomous nervous system, i.e., dysautonomia. These patients could benefit from vagal nerve stimulation.
Collapse
Affiliation(s)
- Jukka Ylikoski
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
- Helsinki Ear Institute, 00420 Helsinki, Finland;
- Salustim Group Inc., 90440 Kempele, Finland
| | - Jarmo Lehtimäki
- Helsinki Ear Institute, 00420 Helsinki, Finland;
- Salustim Group Inc., 90440 Kempele, Finland
| | - Rauno Pääkkönen
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
| |
Collapse
|
11
|
Al-Awwal N, Dweik F, Mahdi S, El-Dweik M, Anderson SH. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens 2022; 11:368. [PMID: 35335691 PMCID: PMC8951506 DOI: 10.3390/pathogens11030368] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Development and deployment of biosensors for the rapid detection of the 2019 novel severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are of utmost importance and urgency during this recent outbreak of coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection, which spread rapidly around the world. Cases now confirmed in February 2022 indicate that more than 170 countries worldwide are affected. Recent evidence indicates over 430 million confirmed cases with over 5.92 million deaths scattered across the globe, with the United States having more than 78 million confirmed cases and over 920,000 deaths. The US now has many more cases than in China where coronavirus cases were first reported in late December 2019. During the initial outbreak in China, many leaders did not anticipate it could reach the whole world, spreading to many countries and posing severe threats to global health. The objective of this review is to summarize the origin of COVID-19, its biological nature, comparison with other coronaviruses, symptoms, prevention, treatment, potential, available methods for SARS-CoV-2 detection, and post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Nasruddeen Al-Awwal
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Ferris Dweik
- Department of Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Samira Mahdi
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Majed El-Dweik
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Stephen H. Anderson
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|