1
|
Zhou Z, Shao G, Shen Y, He F, Tu X, Ji J, Ao J, Chen X. Extreme-Phenotype Genome-Wide Association Analysis for Growth Traits in Spotted Sea Bass ( Lateolabrax maculatus) Using Whole-Genome Resequencing. Animals (Basel) 2024; 14:2995. [PMID: 39457925 PMCID: PMC11503831 DOI: 10.3390/ani14202995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Spotted sea bass (Lateolabrax maculatus) is an important marine economic fish in China, ranking third in annual production among marine fish. However, a declined growth rate caused by germplasm degradation has severely increased production costs and reduced economic benefits. There is an urgent need to develop the fast-growing varieties of L. maculatus and elucidate the genetic mechanisms underlying growth traits. Here, whole-genome resequencing technology combined with extreme phenotype genome-wide association analysis (XP-GWAS) was used to identify candidate markers and genes associated with growth traits in L. maculatus. Two groups of L. maculatus, consisting of 100 fast-growing and 100 slow-growing individuals with significant differences in body weight, body length, and carcass weight, underwent whole-genome resequencing. A total of 4,528,936 high-quality single nucleotide polymorphisms (SNPs) were used for XP-GWAS. These SNPs were evenly distributed across all chromosomes without large gaps, and the average distance between SNPs was only 175.8 bp. XP-GWAS based on the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (Blink) and Fixed and random model Circulating Probability Unification (FarmCPU) identified 50 growth-related markers, of which 17 were related to body length, 19 to body weight, and 23 to carcass weight. The highest phenotypic variance explained (PVE) reached 15.82%. Furthermore, significant differences were observed in body weight, body length, and carcass weight among individuals with different genotypes. For example, there were highly significant differences in body weight among individuals with different genotypes for four SNPs located on chromosome 16: chr16:13133726, chr16:13209537, chr16:14468078, and chr16:18537358. Additionally, 47 growth-associated genes were annotated. These genes are mainly related to the metabolism of energy, glucose, and lipids and the development of musculoskeletal and nervous systems, which may regulate the growth of L. maculatus. Our study identified growth-related markers and candidate genes, which will help to develop the fast-growing varieties of L. maculatus through marker-assisted breeding and elucidate the genetic mechanisms underlying the growth traits.
Collapse
Affiliation(s)
- Zhaolong Zhou
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Guangming Shao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Yibo Shen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Fengjiao He
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xiaomei Tu
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jiawen Ji
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jingqun Ao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xinhua Chen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
2
|
Shinsato RN, Correa CG, Herai RH. Genetic network analysis indicate that individuals affected by neurodevelopmental conditions have genetic variations associated with ophthalmologic alterations: A critical review of literature. Gene 2024; 908:148246. [PMID: 38325665 DOI: 10.1016/j.gene.2024.148246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Changes in the nervous system are related to a wide range of mental disorders, which include neurodevelopmental disorders (NDD) that are characterized by early onset mental conditions, such as schizophrenia and autism spectrum disorders and correlated conditions (ASD). Previous studies have shown distinct genetic components associated with diverse schizophrenia and ASD phenotypes, with mostly focused on rescuing neural phenotypes and brain activity, but alterations related to vision are overlooked. Thus, as the vision is composed by the eyes that itself represents a part of the brain, with the retina being formed by neurons and cells originating from the glia, genetic variations affecting the brain can also affect the vision. Here, we performed a critical systematic literature review to screen for all genetic variations in individuals presenting NDD with reported alterations in vision. Using these restricting criteria, we found 20 genes with distinct types of genetic variations, inherited or de novo, that includes SNP, SNV, deletion, insertion, duplication or indel. The variations occurring within protein coding regions have different impact on protein formation, such as missense, nonsense or frameshift. Moreover, a molecular analysis of the 20 genes found revealed that 17 shared a common protein-protein or genetic interaction network. Moreover, gene expression analysis in samples from the brain and other tissues indicates that 18 of the genes found are highly expressed in the brain and retina, indicating their potential role in adult vision phenotype. Finally, we only found 3 genes from our study described in standard public databanks of ophthalmogenetics, suggesting that the other 17 genes could be novel target for vision diseases.
Collapse
Affiliation(s)
- Rogério N Shinsato
- Unisalesiano, Araçatuba, São Paulo, Brazil; Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.
| | - Camila Graczyk Correa
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil; Research Division, Buko Kaesemodel Institute (IBK), Curitiba, Paraná 80240-000, Brazil; Research Division, 9p Brazil Association (A9pB), Santa Maria, Rio Grande do Sul 97060-580, Brazil.
| |
Collapse
|
3
|
Perdomo-Sabogal A, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. DNA methylation landscapes from pig's limbic structures underline regulatory mechanisms relevant for brain plasticity. Sci Rep 2022; 12:16293. [PMID: 36175587 PMCID: PMC9522933 DOI: 10.1038/s41598-022-20682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic dynamics are essential for reconciling stress-induced responses in neuro-endocrine routes between the limbic brain and adrenal gland. CpG methylation associates with the initiation and end of regulatory mechanisms underlying responses critical for survival, and learning. Using Reduced Representation Bisulfite Sequencing, we identified methylation changes of functional relevance for mediating tissue-specific responses in the hippocampus, amygdala, hypothalamus, and adrenal gland in pigs. We identified 4186 differentially methylated CpGs across all tissues, remarkably, enriched for promoters of transcription factors (TFs) of the homeo domain and zinc finger classes. We also detected 5190 differentially methylated regions (DMRs, 748 Mb), with about half unique to a single pairwise. Two structures, the hypothalamus and the hippocampus, displayed 860 unique brain-DMRs, with many linked to regulation of chromatin, nervous development, neurogenesis, and cell-to-cell communication. TF binding motifs for TFAP2A and TFAP2C are enriched amount DMRs on promoters of other TFs, suggesting their role as master regulators, especially for pathways essential in long-term brain plasticity, memory, and stress responses. Our results reveal sets of TF that, together with CpG methylation, may serve as regulatory switches to modulate limbic brain plasticity and brain-specific molecular genetics in pigs.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
ABHD4-dependent developmental anoikis safeguards the embryonic brain. Nat Commun 2020; 11:4363. [PMID: 32868797 PMCID: PMC7459116 DOI: 10.1038/s41467-020-18175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
A specialized neurogenic niche along the ventricles accumulates millions of progenitor cells in the developing brain. After mitosis, fate-committed daughter cells delaminate from this germinative zone. Considering the high number of cell divisions and delaminations taking place during embryonic development, brain malformations caused by ectopic proliferation of misplaced progenitor cells are relatively rare. Here, we report that a process we term developmental anoikis distinguishes the pathological detachment of progenitor cells from the normal delamination of daughter neuroblasts in the developing mouse neocortex. We identify the endocannabinoid-metabolizing enzyme abhydrolase domain containing 4 (ABHD4) as an essential mediator for the elimination of pathologically detached cells. Consequently, rapid ABHD4 downregulation is necessary for delaminated daughter neuroblasts to escape from anoikis. Moreover, ABHD4 is required for fetal alcohol-induced apoptosis, but not for the well-established form of developmentally controlled programmed cell death. These results suggest that ABHD4-mediated developmental anoikis specifically protects the embryonic brain from the consequences of sporadic delamination errors and teratogenic insults.
Collapse
|
7
|
László ZI, Bercsényi K, Mayer M, Lefkovics K, Szabó G, Katona I, Lele Z. N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors in a Cell-Type-Specific Manner. Cereb Cortex 2020; 30:1318-1329. [PMID: 31402374 PMCID: PMC7219024 DOI: 10.1093/cercor/bhz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
Collapse
Affiliation(s)
- Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Kinga Bercsényi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Mátyás Mayer
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Lefkovics
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Wang C, Pan YH, Wang Y, Blatt G, Yuan XB. Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum. Mol Brain 2019; 12:40. [PMID: 31046797 PMCID: PMC6498582 DOI: 10.1186/s13041-019-0461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
Collapse
Affiliation(s)
- Chunlei Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Gene Blatt
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Jabbari K, Bobbili DR, Lal D, Reinthaler EM, Schubert J, Wolking S, Sinha V, Motameny S, Thiele H, Kawalia A, Altmüller J, Toliat MR, Kraaij R, van Rooij J, Uitterlinden AG, Ikram MA, Zara F, Lehesjoki AE, Krause R, Zimprich F, Sander T, Neubauer BA, May P, Lerche H, Nürnberg P. Rare gene deletions in genetic generalized and Rolandic epilepsies. PLoS One 2018; 13:e0202022. [PMID: 30148849 PMCID: PMC6110470 DOI: 10.1371/journal.pone.0202022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have been recognized as important risk factors in brain disorders. We performed a systematic survey of rare deletions affecting protein-coding genes derived from exome data of patients with common forms of genetic epilepsies. We analysed exomes from 390 European patients (196 GGE and 194 RE) and 572 population controls to identify low-frequency genic deletions. We found that 75 (32 GGE and 43 RE) patients out of 390, i.e. ~19%, carried rare genic deletions. In particular, large deletions (>400 kb) represent a higher burden in both GGE and RE syndromes as compared to controls. The detected low-frequency deletions (1) share genes with brain-expressed exons that are under negative selection, (2) overlap with known autism and epilepsy-associated candidate genes, (3) are enriched for CNV intolerant genes recorded by the Exome Aggregation Consortium (ExAC) and (4) coincide with likely disruptive de novo mutations from the NPdenovo database. Employing several knowledge databases, we discuss the most prominent epilepsy candidate genes and their protein-protein networks for GGE and RE.
Collapse
Affiliation(s)
- Kamel Jabbari
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Cologne Biocenter, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Dheeraj R. Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vishal Sinha
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Amit Kawalia
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Robert Kraaij
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - M. Arfan Ikram
- Departments of Epidemiology, Neurology, and Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Institute G. Gaslini, Genova, Italy
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Neuroscience Center and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bernd A. Neubauer
- Department of Neuropediatrics, Medical Faculty University Giessen, Giessen, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
A genome scan for selection signatures in Taihu pig breeds using next-generation sequencing. Animal 2018; 13:683-693. [PMID: 29987993 DOI: 10.1017/s1751731118001714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Taihu pig breeds are the most prolific breeds of swine in the world, and they also have superior economic traits, including high resistance to disease, superior meat quality, high resistance to crude feed and a docile temperament. The formation of these phenotypic characteristics is largely a result of long-term artificial or natural selection. Therefore, exploring selection signatures in the genomes of the Taihu pigs will help us to identify porcine genes related to productivity traits, disease and behaviour. In this study, we used both intra-population (Relative Extend Haplotype Homozygosity Test (REHH)) and inter-population (the Cross-Population Extend Haplotype Homozygosity Test (XPEHH); F-STATISTICS, F ST ) methods to detect genomic regions that might be under selection process in Taihu pig breeds. As a result, we found 282 (REHH) and 112 (XPEHH) selection signature candidate regions corresponding to 159.78 Mb (6.15%) and 62.29 Mb (2.40%) genomic regions, respectively. Further investigations of the selection candidate regions revealed that many genes under these genomic regions were related to reproductive traits (such as the TLR9 gene), coat colour (such as the KIT gene) and fat metabolism (such as the CPT1A and MAML3 genes). Furthermore, gene enrichment analyses showed that genes under the selection candidate regions were significantly over-represented in pathways related to diseases, such as autoimmune thyroid and asthma diseases. In conclusion, several candidate genes potentially under positive selection were involved in characteristics of Taihu pig. These results will further allow us to better understand the mechanisms of selection in pig breeding.
Collapse
|
11
|
Lizen B, Moens C, Mouheiche J, Sacré T, Ahn MT, Jeannotte L, Salti A, Gofflot F. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function. Front Mol Neurosci 2017; 10:369. [PMID: 29187810 PMCID: PMC5695161 DOI: 10.3389/fnmol.2017.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.
Collapse
Affiliation(s)
- Benoit Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Moens
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinane Mouheiche
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Sacré
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.,Centre de Recherche sur le Cancer, Université Laval, Quebec City, QC, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Ahmad Salti
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Hutlet B, Theys N, Coste C, Ahn MT, Doshishti-Agolli K, Lizen B, Gofflot F. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 2014; 221:1223-43. [PMID: 25527350 DOI: 10.1007/s00429-014-0965-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.
Collapse
Affiliation(s)
- Bertrand Hutlet
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Nicolas Theys
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Cécile Coste
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, 4000, Liège, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | | | - Benoît Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.
| |
Collapse
|
13
|
Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also Glutamatergic [corrected] - and insulin-mediated neuronal processes. PLoS One 2014; 9:e113662. [PMID: 25423262 PMCID: PMC4244101 DOI: 10.1371/journal.pone.0113662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/27/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke.
Collapse
|
14
|
Hox transcription factors: modulators of cell-cell and cell-extracellular matrix adhesion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591374. [PMID: 25136598 PMCID: PMC4127299 DOI: 10.1155/2014/591374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 01/14/2023]
Abstract
Hox genes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development. Hox genes are also expressed in various adult tissues and cancer cells. In Drosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.
Collapse
|
15
|
Zhao J, Li P, Feng H, Wang P, Zong Y, Ma J, Zhang Z, Chen X, Zheng M, Zhu Z, Lu A. Cadherin-12 contributes to tumorigenicity in colorectal cancer by promoting migration, invasion, adhersion and angiogenesis. J Transl Med 2013; 11:288. [PMID: 24237488 PMCID: PMC3879717 DOI: 10.1186/1479-5876-11-288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background Cadherin 12 (CDH12), which encodes a type II classical cadherin from the cadherin superfamily, may mediate calcium-dependent cell adhesion. It has been demonstrated that CDH12 could play an important role in the invasion and metastasis of salivary adenoid cystic carcinoma. We decided to investigate the relationship between CDH12 expression level and clinicopathologic variables in colorectal carcinoma (CRC) patients and to explore the functions of CDH12 in tumorigenesis in CRC. Methods The expression levels of CDH12 in colorectal carcinoma tissues were detected by immunohistochemistry. Real-time PCR and Western Blot were used to screen CDH12 high-expression cell lines. CCK-8 assay was used to detect the proliferation ability of CRC cells being transfected by shRNAs against CDH12. The wound assay and transwell assay were performed to test migration and invasion ability. The importance of CDH12 in cell-cell junctions was detected by cell adhesion assay and cell aggregation assay. Endothelial tube formation assay was used to test the influence of CDH12 on angiogenesis. Results Statistical analysis of clinical cases revealed that the positive rate of CDH12 was higher in the CRC tumor tissues compared with the adjacent non-tumor tissues. The expression levels of CDH12 in CRC patients are significantly correlated with invasion depth. Consistently, the ability of proliferation, migration and invasion were suppressed when CDH12 was decreased in CRC cells transfected with shRNAs. Cell adhesion assay and cell aggregation assay presented that tumor cells tend to disperse with the lack of CDH12. Endothelial tube formation assay showed that down-regulation of CDH12 could obviously inhibit the process of angiogenesis, implying that CDH12 may play an important role in tumor metastasis Conclusion Our results showed that CDH12 promotes proliferation, migration, invasion, adhesion and angiogenesis, suggesting that CDH12 may be an oncogene in colorectal cancer. CDH12 is expected to become a new diagnostic and prognostic marker and a novel target of the treatment of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhenggang Zhu
- Shanghai Minimally Invasive Surgery Center, Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Rd, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
16
|
Nazaryan L, Stefanou EG, Hansen C, Kosyakova N, Bak M, Sharkey FH, Mantziou T, Papanastasiou AD, Velissariou V, Liehr T, Syrrou M, Tommerup N. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet 2013; 22:338-43. [PMID: 23860044 PMCID: PMC3925275 DOI: 10.1038/ejhg.2013.147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 11/13/2022] Open
Abstract
Next-generation mate-pair sequencing (MPS) has revealed that many constitutional complex chromosomal rearrangements (CCRs) are associated with local shattering of chromosomal regions (chromothripsis). Although MPS promises to identify the molecular basis of the abnormal phenotypes associated with many CCRs, none of the reported mate-pair sequenced complex rearrangements have been simultaneously studied with state-of-the art molecular cytogenetic techniques. Here, we studied chromothripsis-associated CCR involving chromosomes 2, 5 and 7, associated with global developmental and psychomotor delay and severe speech disorder. We identified three truncated genes: CDH12, DGKB and FOXP2, confirming the role of FOXP2 in severe speech disorder, and suggestive roles of CDH12 and/or DGKB for the global developmental and psychomotor delay. Our study confirmes the power of MPS for detecting breakpoints and truncated genes at near nucleotide resolution in chromothripsis. However, only by combining MPS data with conventional G-banding and extensive fluorescence in situ hybridizations could we delineate the precise structure of the derivative chromosomes.
Collapse
Affiliation(s)
- Lusine Nazaryan
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Eunice G Stefanou
- Laboratory of Medical Genetics, Cytogenetics Unit, Department of Pediatrics, University General Hospital of Patras, Patras, Greece
| | - Claus Hansen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Freddie H Sharkey
- Department of Molecular Genetics, Western General Hospital, Edinburgh, UK
| | - Theodora Mantziou
- Laboratory of General Biology, University of Ioannina, Ioannina, Greece
| | | | - Voula Velissariou
- Department of Genetics and Molecular Biology, 'Mitera' General Maternity/Gynecology and Children's Hospital, Hygeia Group, Athens, Greece
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Maria Syrrou
- Laboratory of General Biology, University of Ioannina, Ioannina, Greece
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X-linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. PLoS One 2013; 8:e58840. [PMID: 23527036 PMCID: PMC3601081 DOI: 10.1371/journal.pone.0058840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Protocadherin-11 is a cell adhesion molecule of the cadherin superfamily. Since, only in humans, its paralog is found on the Y chromosome, it is expected that protocadherin-11X/Y plays some role in human brain evolution or sex differences. Recently, a genetic mutation of protocadherin-11X/Y was reported to be associated with a language development disorder. Here, we compared the expression of protocadherin-11 X-linked in developing postnatal brains of mouse (rodent) and common marmoset (non-human primate) to explore its possible involvement in mammalian brain evolution. We also investigated its expression in the Bengalese finch (songbird) to explore a possible function in animal vocalization and human language faculties. Methodology/Principal Findings Protocadherin-11 X-linked was strongly expressed in the cerebral cortex, hippocampus, amygdala and brainstem. Comparative analysis between mice and marmosets revealed that in certain areas of marmoset brain, the expression was clearly enriched. In Bengalese finches, protocadherin-11 X-linked was expressed not only in nuclei of regions of the vocal production pathway and the tracheosyringeal hypoglossal nucleus, but also in areas homologous to the mammalian amygdala and hippocampus. In both marmosets and Bengalese finches, its expression in pallial vocal control areas was developmentally regulated, and no clear expression was seen in the dorsal striatum, indicating a similarity between songbirds and non-human primates. Conclusions/Significance Our results suggest that the enriched expression of protocadherin-11 X-linked is involved in primate brain evolution and that some similarity exists between songbirds and primates regarding the neural basis for vocalization.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan.
| | | | | | | | | |
Collapse
|
18
|
A Peculiarly Cerebroid Convex Zygo-Dodecahedron is an Axiomatically Balanced “House of Blues”: The Circle of Fifths to the Circle of Willis to Cadherin Cadenzas. Symmetry (Basel) 2012. [DOI: 10.3390/sym4040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 2012; 86:11333-44. [PMID: 22896612 DOI: 10.1128/jvi.01549-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.
Collapse
|
20
|
Lefkovics K, Mayer M, Bercsényi K, Szabó G, Lele Z. Comparative analysis of type II classic cadherin mRNA distribution patterns in the developing and adult mouse somatosensory cortex and hippocampus suggests significant functional redundancy. J Comp Neurol 2012; 520:1387-1405. [DOI: 10.1002/cne.22801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Saarimäki-Vire J, Alitalo A, Partanen J. Analysis of Cdh22 expression and function in the developing mouse brain. Dev Dyn 2011; 240:1989-2001. [PMID: 21761482 DOI: 10.1002/dvdy.22686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Classical cadherins are important cell adhesion molecules specifying and separating brain nuclei and developmental compartments. Cadherin-22 (Cdh22) belongs to type II subfamily of classical cadherins, and is expressed at the midbrain-hindbrain boundary during early embryogenesis. In Fgfr1 mutant mouse embryos, which have a disturbed midbrain-hindbrain border, Cdh22 is down-regulated. Here, we studied expression of Cdh22 in developing mouse brain in more detail and compared it to expression of related family members. This revealed both complementary and overlapping patterns of Cdh22, Cdh11, Cdh8, and Cdh6 expression in distinct regions of the forebrain and midbrain. We used a mutated allele of Cdh22 to study its function in brain development. Loss of Cdh22 caused reduced postnatal viability. Despite strong Cdh22 expression in the developing brain, we did not observe defects in compartmentalization or abnormalities in the midbrain and forebrain nuclei in Cdh22 mutants. This may be explained by functional redundancy between type II cadherins.
Collapse
|