1
|
Wu J, Liu Y, Wang Y, Fu P, Luo J, Li P, Ruan R, Yang J, Xu S, Li M, Du H, Zhang C, Li L. The Influence of Dietary n-3 Highly Unsaturated Fatty Acids on Growth, Fatty Acid Profile, Lipid Metabolism, Inflammatory Response, and Intestinal Microflora in F 2 Generation Female Yangtze Sturgeon ( Acipenser dabryanus). Animals (Basel) 2024; 14:3523. [PMID: 39682488 DOI: 10.3390/ani14233523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
DHA and EPA, as indispensable n-3 highly unsaturated fatty acids (HUFAs), exert a fundamental influence on regulating fish growth, lipid metabolism, and overall well-being. However, there is a notable lack of data concerning their effects on the F2 female generation of Yangtze sturgeon. Over a ten-month period, this study assessed the impacts of various dietary concentrations of n-3 HUFAs (0.5%, 1.0%, 1.5%, 2.0%, and 2.4%) on growth, fatty acid composition, lipid metabolism, inflammatory response, and intestinal microbiota in the F2 female generation of Yangtze sturgeon. Seventy-five test fish, with an average body weight of 3.60 ± 0.83 kg, were housed in 15 ponds, with each dietary group being assigned to three ponds. The results indicated that the 1.0%~1.5% n-3 HUFA group was characterized by the highest values of weight gain rate; serum triglyceride levels peaked in the 0.5% n-3 HUFA group. The fatty acid profiles of the fish tissues closely mirrored those of the diets. Specifically, compared to the 1.5% and 2.0% n-3 HUFA groups, the diet containing 2.4% n-3 HUFA down-regulated the mRNA expression of transforming growth factor beta, and, compared to the 0.5% and 1.0% n-3 HUFA groups, the 2.0% n-3 HUFA diet up-regulated the mRNA expression of nuclear factor kappa B. Conversely, compared to the 0.5% n-3 HUFA group, 2.0% n-3 HUFA in the diet up-regulated the gene mRNA expression of fatty acid binding protein 1 and fatty acid synthase. Compared to the 0.5% n-3 HUFA group, 1.0% n-3 HUFA in the diet up-regulated the gene mRNA expression of lipoprotein lipase. The α-diversity indices (ACE, PD_whole tree, Richness, and Chao1) exhibited an upward trend with increasing dietary n-3 HUFA levels, and the 2.4% n-3 HUFA group reached the highest values. At the phylum level, Fusobacteriota, Proteobacteria, Firmicutes, and Bacteroidota were the primary dominant phyla. Cetobacterium was the dominant genus in all groups. Collectively, these findings underscore that moderate dietary supplementation of n-3 HUFA (1.3%) is optimal and does not impair growth. The deposition of fatty acids in muscle and ovarian tissues, as well as the mRNA expression of lipid-metabolism genes, are closely associated with the dietary n-3 HUFA content. High levels of n-3 HUFA did not suppress intestinal α-diversity. These discoveries provide novel insights into the regulation of growth, lipid metabolism, and health in the F2 female generation of Yangtze sturgeon and offer a nutritional strategy for the artificial conservation of this endangered species.
Collapse
Affiliation(s)
- Jinping Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuan Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuqi Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Peng Fu
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China
| | - Jiang Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Pengcheng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Rui Ruan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Junlin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shijian Xu
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hao Du
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuang Zhang
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China
| | - Luoxin Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
2
|
Żelazowska M, Pšenička M. Secondary growth ovarian follicles of the pigmented sterlet sturgeon Acipenser ruthenus L. 1758 (Acipenseriformes, Chondrostei, Actinopterygii, Osteichthyes) - Microscopic study of oocytes, egg envelope and diversification of follicular cells. Micron 2024; 186:103701. [PMID: 39128200 DOI: 10.1016/j.micron.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The individual ovarian follicle of sturgeons (Acipenseriformes, Acipenseridae) contains an oocyte surrounded by follicular cells (FCs), basal lamina, and thecal cells. The late stages of the secondary growth of follicles (mid- and advanced vitellogenic) are not fully explained in Acipenseriformes. To explore and discuss the ultrastructure of oocytes, FCs, an egg envelope, and explain how micropylar cells differentiate and the canals of a multiple micropyle are formed, the samples of ovaries of the mature sterlet sturgeon Acipenser ruthenus were examined. The oocytes are polarized, the nucleus is located in the animal hemisphere, contains lampbrush chromosomes and multiple nucleoli. In the ooplasm three regions are present: a perinuclear (contains the mitochondria), an endoplasm (contains the lipid droplets and yolk platelets), and a periplasm (contains the cortical granules, melanosomes, endocytotic and exocytotic vesicles). The melanosomes in animal hemisphere form two concentric rings separated by a lighter region between them. The FCs are differentiated into bright and dark cells that are both translationally and secretory active. Diversification of FCs involves repeated and cytoskeleton-dependent change of shape. In the advanced follicles the FCs are diversified into micropylar, the animal and vegetal regions cells, and the cells that delaminated from the epithelium in the animal region. The egg envelope is present in the perioocytic space and consists of three layers: (1) an inner layer or vitelline envelope, (2) a middle layer, and (3) an outer layer. The inner layer consists of four sublayers: (a) a filamentous sublayer composed of filaments released from the oocytes, (b) a trabecular 1 sublayer and (c) a trabecular 2 sublayer named due to the sequence of the deposition, and composed of filaments, fibres and trabecules, (d) a homogeneous sublayer located between the trabecular 1 and trabecular 2 sublayers composed of filaments that adhere to each other closely. The middle layer contains two sublayers: a porous 1 and a porous 2 (composed of granular material) which are released by the oocyte and FCs. The outer layer consists of fibrillar material released by the FCs. The egg envelope is pierced by radial canals formed around the microvilli of the oocyte and the microvilli-like processes of FCs. A micropylar field in the egg envelope that covers the animal pole of the oocyte contains 1 - 4 micropylar canals. Micropylar cells are involved in their formation. The shape of these cells is icicle-like and the cytoplasm is differentiated into two regions (a basal and apical bearing a projection) equipped with different sets of organelles.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
3
|
Wu J, Xiong W, Liu W, Wu J, Ruan R, Fu P, Wang Y, Liu Y, Leng X, Li P, Zhong J, Zhang C, Du H. The Effects of Dietary n-3 Highly Unsaturated Fatty Acids on Growth, Antioxidant Capacity, Immunity, and Oxylipin Profiles in Acipenser dabryanus. Antioxidants (Basel) 2024; 13:421. [PMID: 38671869 PMCID: PMC11047622 DOI: 10.3390/antiox13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, the effects of dietary levels of n-3 highly unsaturated fatty acids (HUFAs) on the growth performance, antioxidant capacity, immunity, and serum oxylipin profiles of female F2-generation Yangtze sturgeon remain unknown. A total of 75 Yangtze sturgeons, an endangered freshwater fish species, with an average body weight of 3.60 ± 0.83 kg, were randomly allocated to 15 concrete pools, with each dietary group represented by 5 fish per pool. The fish were fed five different experimental diets containing various levels of n-3 HUFAs (0.5%, 1.0%, 1.5%, 2.0%, and 2.4%). After a feeding period of 5 months, no significant differences in the growth performances of the fish were observed among the five dietary groups (p > 0.05). However, we did note that the serum levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and total cholesterol (TCHO) exhibited a marked increase in the fish that consumed higher dietary n-3 HUFA levels (p < 0.05). Conversely, alkaline phosphatase (ALP) activities showed a notable decrease as dietary n-3 HUFA levels increased (p < 0.05). Serum antioxidant indices, such as the activity levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were significantly higher in the 2.4% HUFA group compared to the 0.5% HUFA group. Additionally, muscle antioxidant indices, including total antioxidant capacity (T-AOC), catalase (CAT), and SOD activity, exhibited notable increases as dietary n-3 HUFA levels increased (p < 0.05). Furthermore, there was a decrease in malondialdehyde (MDA) levels as dietary n-3 HUFA levels increased (p < 0.05). In relation to immune indices, only serum immunoglobulin M (IgM) and muscle complement 3 (C3) were found to be influenced by dietary n-3 HUFA levels (p < 0.05). A total of 80 oxylipins were quantified, and our subsequent K-means cluster analysis resulted in the classification of 62 oxylipins into 10 subclasses. Among the different n-3 HUFA diets, a total of 14 differential oxylipins were identified in the sera. These findings demonstrate that dietary supplementation with n-3 HUFAs exceeding a 1.0% level can enhance antioxidant capacity and regulate serum lipid metabolism, potentially through modulation of oxylipins derived from ARA, DHA, and EPA. These insights provide novel perspectives on the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Jinping Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Wei Xiong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Jinming Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Rui Ruan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Peng Fu
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China;
| | - Yuqi Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Yuan Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Xiaoqian Leng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Pengcheng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Jia Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Chuang Zhang
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China;
| | - Hao Du
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| |
Collapse
|
4
|
Shiguemoto GF, Coelho GCZ, López LS, Pessoa GP, Dos Santos SCA, Senhorini JA, Monzani PS, Yasui GS. Primordial germ cell identification and traceability during the initial development of the Siluriformes fish Pseudopimelodus mangurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1137-1153. [PMID: 35925505 DOI: 10.1007/s10695-022-01106-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Primordial germ cells (PGCs) are responsible for generating all germ cells. Therefore, they are essential targets to be used as a tool for the production of germline chimeras. The labeling and route of PGCs were evaluated during the initial embryonic development of Pseudopimelodus mangurus, using whole-mount in situ hybridization (WISH) and mRNA microinjection in zygotes. A specific antisense RNA probe constituted by a partial coding region from P. mangurus nanos3 mRNA was synthesized for the WISH method. RNA microinjection was performed using the GFP gene reporter regulated by translation regulatory P. mangurus buc and nanos3 3'UTR sequences, germline-specific markers used to describe in vivo migration of PGCs. Nanos3 and buc gene expression was evaluated in tissues for male and female adults and initial development phases and larvae from the first to seventh days post-hatching. The results from the WISH technique indicated the origin of PGCs in P. mangurus from the aggregations of nanos3 mRNA in the cleavage grooves and the signals obtained from nanos3 probes corresponded topographically to the migratory patterns of the PGCs reported for other fish species. Diffuse signals were observed in all blastomeres until the 16-cell stage, which could be related to the two sequences of the nanos3 3'UTR observed in the P. mangurus unfertilized egg transcriptome. Microinjection was not successful using GFP-Dr-nanos1 3'UTR mRNA and GFP-Pm-buc 3'UTR mRNA and allowed the identification of potential PGCs with less than 2% efficiency only and after hatching using GFP-Pm-nanos3 3'UTR. Nanos3 and buc gene expression was reported in the female gonads and from fertilized eggs until the blastula phase. These results provide information about the PGC migration of P. mangurus and the possible use of PGCs for the future generation of germline chimeras to be applied in the conservation efforts of Neotropical Siluriformes species. This study can contribute to establishing genetic banks, manipulating organisms, and assisting in biotechnologies such as transplanting germ cells in fish.
Collapse
Affiliation(s)
- Gustavo Fonseca Shiguemoto
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Geovanna Carla Zacheo Coelho
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | | | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - George Shigueki Yasui
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
5
|
Charitonidou K, Panteris E, Ganias K. Balbiani body formation and cytoplasmic zonation during early oocyte development in two Clupeiform fishes. JOURNAL OF FISH BIOLOGY 2022; 100:1223-1232. [PMID: 35244939 DOI: 10.1111/jfb.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The Balbiani body (Bb) was examined in primary growth phase oocytes for the first time in two clupeoid fish species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus, which belong to different families, Clupeidae and Engraulidae, respectively. Cytoplasmic morphological changes of early secondary growth oocytes were also investigated using confocal laser scanning microscopy, light and transmission electron microscopy. The ultrastructural observations showed that the two species develop a distinct spherical Bb. However, differences in the cytoplasm, mainly in the perinuclear area, were observed. Briefly, in sardine the Bb coexists with a thick perinuclear ring containing mitochondria, nuage, endoplasmic reticulum and small vesicles, while in anchovy this perinuclear ring is thinner, consisting of complexes of nuage and mitochondria. After the disassembly of the Bb, a prominent cytoplasmic zonation develops in the secondary growth oocytes of sardine and anchovy, although with different organelle distribution between the two species. Sardine oocytes exhibit a thick zone of endoplasmic reticulum around the nucleus, whereas in those of anchovy, a thick mitochondria-rich ring surrounding the nucleus was observed. The cytoplasmic characteristics, such as the perinuclear ring in primary oocytes in sardine and the mitochondria-rich ring of early secondary oocytes in anchovy, are also discernible in histological sections by standard procedures and could thus be used as indicators of maturity or imminent spawning period in routine light microscopy observations, providing a valuable tool for applied fisheries biology.
Collapse
Affiliation(s)
- Katerina Charitonidou
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Ganias
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Foundation and Prospects of Wild Population Reconstruction of Acipenser dabryanus. FISHES 2021. [DOI: 10.3390/fishes6040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acipenser dabryanus is an endemic fish inhabiting the upper reaches of the Yangtze River in China. It is classified as a first-class nationally protected animal in China and is listed in the International Union for Conservation of Nature (IUCN) Red List of Critically Endangered Species (CR). Recently, there has been a decrease in natural reproduction of A. dabryanus, and the wild population is almost extinct. This paper summarizes the changes observed in the natural population of A.dabryanus and the factors leading to its endangerment. Based on the process of artificial propagation and achievement of relevant protection goals, this paper presents the concept and technical framework for reconstruction of the wild population of A. dabryanus. In addition, by comprehensively reviewing the research findings and existing problems in the resource protection and monitoring of A. dabryanus in recent years, we assessed the possibility of wild population reconstruction and resource restoration for A. dabryanus. Reconstruction and restoration measures for the wild population of A. dabryanus are proposed, with the aim of providing a scientific basis for the reconstruction of the natural population and the improvement and restoration of critical habitat of this species. Furthermore, it is hoped that this paper will serve as a reference for the protection and restoration of other endangered fishes.
Collapse
|
7
|
Song P, Sun B, Zhu Y, Zhong Y, Guo J, Gui L, Li M. Bucky ball induces primordial germ cell increase in medaka. Gene 2020; 768:145317. [PMID: 33221537 DOI: 10.1016/j.gene.2020.145317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
Balbaini body (Bb) plays a vital role in germ plasm (GP) assembly and dorsoventral pattern, which is of critical important in germline specification and development. Bucky ball (buc) is reported to be essential for boosting primordial germ cell (PGC) through Bb in previous research. In the present study, a buc homolog (Olbuc) was identified in medaka (Oryzias latipes), and the roles of Olbuc on PGC development were further elucidated. The full length of Olbuc was 2148 bp, which contains a 1724 bp CDS (Coding sequence), a 167 bp 5' UTR (Untranslated region), and a 257 bp 3' UTR. By RT-PCR, the Olbuc RNA expression was maternally provided during embryogenesis and was restricted in the ovary of adult tissues. By in situ hybridization, Olbuc RNA was abundant in oocyte of meiotic stage, but gradually decreased as the oogenesis proceeded. Surprisingly, Olbuc was not co-localized with dazl, the marker gene of Bb. Interestingly, GFP can be specifically and stably expressed through the induction of Olbuc 3'UTR in PGCs. Furthermore, overexpression of Olbuc mRNA could increase PGC number and generate ectopic PGC in medaka and zebrafish embryos. In summary, our results showed that Olbuc performs a conserved function in PGC development in medaka.
Collapse
Affiliation(s)
- Peng Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bingyan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Żelazowska M, Halajian A. Asymmetry in the cytoplasm of oocytes of largescale yellowfish Labeobarbus marequensis Smith 1841 (Teleostei: Cypriniformes: Cyprinidae). J Morphol 2020; 281:997-1009. [PMID: 32562511 DOI: 10.1002/jmor.21228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/13/2020] [Accepted: 06/05/2020] [Indexed: 11/08/2022]
Abstract
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ali Halajian
- DST-NRF SARChI Research Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| |
Collapse
|
9
|
Żelazowska M, Fopp-Bayat D. Germline cysts and asymmetry in early previtellogenic ovarian follicles in cultured albino females of sterlet Acipenser ruthenus L. 1758 (Chondrostei, Acipenseriformes). PROTOPLASMA 2019; 256:1229-1244. [PMID: 31020396 PMCID: PMC6713787 DOI: 10.1007/s00709-019-01376-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
It is a first report on the structure of germline cells in ovaries of albino sterlet Acipenser ruthenus L. 1758. Ovarian nests, follicles, and germinal epithelium have been examined in gynogenetic and control specimens of this species. The structure of oogonia (named the cystoblasts) and of germline cysts in the nests has been described in detail. Also, the asymmetry in the cytoplasm and early growth of cystocytes in the cysts and of early previtellogenic oocytes has been described. In the cytoplasm of cystoblasts and in all cystocytes, a precursor of granular cytoplasm (Balbiani cytoplasm) is present and defines future vegetal region in the oocytes. Interestingly, the nuclei in cystoblasts comprise a large dense body that contains deoxyribonucleic acid (DNA). The role of this body in formation of multiple nucleoli has been explained. During the zygotene and pachytene stages, massive extrachromosomal amplification of DNA begins in the nucleoplasm of all cystocytes. As a result of the accumulation of extra DNA, an irregularly shaped DNA-body is formed. Multiple nucleoli arise in this DNA-body and around fragments of dense bodies. The asymmetry of the early previtellogenic oocyte cytoplasm is well marked by the presence of the granular cytoplasm. Moreover, the cisternae of the rough endoplasmic reticulum, dictyosomes, mitochondria, complexes of mitochondria with cement, nuage accumulations, and lipid droplets are located in specific zones in the granular cytoplasm. The follicular epithelium is composed of two subpopulations of somatic follicular cells (FCs): the main body cells and future micropylar cells.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Dorota Fopp-Bayat
- Department of Ichthyology, Faculty of Environmental Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-917, Olsztyn, Poland
| |
Collapse
|
10
|
Żelazowska M, Halajian A. Previtellogenic oocytes of South African largemouth bass Micropterus salmoides
Lacépède 1802 (Actinopterygii, Perciformes) - the Balbiani body, cortical alveoli and developing eggshell. J Morphol 2019; 280:360-369. [DOI: 10.1002/jmor.20948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research; Jagiellonian University; Kraków Poland
| | - Ali Halajian
- Department of Biodiversity; University of Limpopo; Sovenga South Africa
| |
Collapse
|