1
|
Majeed JA, Bibi S, Mahmood A, Ali L, Safdar ME, Seleiman MF, Abidin ZU, Alhammad BA, Asghar MA. Optimizing Tomato ( Lycopersicon esculentum) Yield Under Salt Stress: The Physiological and Biochemical Effects of Foliar Thiourea Application. PLANTS (BASEL, SWITZERLAND) 2024; 13:3318. [PMID: 39683111 DOI: 10.3390/plants13233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
A pot experiment was conducted to investigate the role of thiourea exogenous application (0 mg/L and 100 mg/L) on the morphological, physiological, and yield traits of two varieties of tomato (Naqeeb and Nadir) under different salt stress treatments (0, 60, and 120 mM) in completely randomized design (CRD). The imposition of salinity by rooting medium showed that salt stress reduced plant height by 20%, fresh shoot weight by 50%, dry shoot weight by 78%, fresh root weight by 43%, dry root weight by 84%, root length by 34%, shoot length by 32%, shoot K+ by 47%, Ca2+ by 70%, chlorophyll a by 30%, chlorophyll b by 67%, and the number of seeds per berry by 53%, while shoot Na+ ions were increased by 90% in comparison to those grown with control treatment. However, the exogenous application of thiourea significantly enhanced dry root weight by 25% and the number of seeds per berry by 20% in comparison to untreated plants with thiourea when grown under salt stress. Salt stress resulted in a reduction in the number of berries, weight per berry, number of seeds per berry, and seed weight in both varieties, while thiourea foliar application increased these yield parameters. On the other hand, the Nadir variety surpassed Naqeeb in plant height (+13%), root length (+31%) and shoot length (+11%), fresh shoot weight (+42%) and dry shoot weight (+11%), fresh root weight (+29%), dry root weight (+25%), area of leaf (+26%), chlorophyll a (+32%), and chlorophyll b (+24%). In conclusion, the exogenous application of thiourea can be used to mitigate salt stress in tomato plants since it can improve the growth, physiological, and yield traits of this strategic crop.
Collapse
Affiliation(s)
- Jawaria Abdul Majeed
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Safura Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Liaqat Ali
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ehsan Safdar
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bushra A Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunzvik St., 2462 Martonvásár, Hungary
| |
Collapse
|
2
|
Li J, Xu L, Xuan P, Tian Z, Liu R. Thiourea and arginine synergistically preserve redox homeostasis and ionic balance for alleviating salinity stress in wheat. Sci Rep 2024; 14:21375. [PMID: 39271951 PMCID: PMC11399406 DOI: 10.1038/s41598-024-72614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Plant growth regulators are cost-effective and efficient methods for enhancing plant defenses under stress conditions. This study investigates the ability of two plant growth-regulating substances, thiourea (TU) and arginine (Arg), to mitigate salinity stress in wheat. The results show that both TU and Arg, particularly when used together, modify plant growth under salinity stress. Their application significantly increases the activities of antioxidant enzymes while decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and relative electrolyte leakage (REL) in wheat seedlings. Additionally, these treatments significantly reduce the concentrations of Na+ and Ca2+ and the Na+/K+ ratio, while significantly increasing K+ levels, thereby preserving ionic osmotic balance. Importantly, TU and Arg markedly enhance the chlorophyll content, net photosynthetic rate, and gas exchange rate in wheat seedlings under salinity stress. The use of TU and Arg, either individually or in combination, results in a 9.03-47.45% increase in dry matter accumulation, with the maximum increase observed when both are used together. Overall, this study highlights that maintaining redox homeostasis and ionic balance are crucial for enhancing plant tolerance to salinity stress. Furthermore, TU and Arg are recommended as potential plant growth regulators to boost wheat productivity under such conditions, especially when applied together.
Collapse
Affiliation(s)
- Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Peng Xuan
- Henan General Chemical Research Institute, Zhengzhou, 450046, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Ishfaq N, Waraich EA, Ahmad M, Hussain S, Zulfiqar U, Din KU, Haider A, Yong JWH, Askri SMH, Ali HM. Mitigating drought-induced oxidative stress in wheat (Triticum aestivum L.) through foliar application of sulfhydryl thiourea. Sci Rep 2024; 14:15985. [PMID: 38987560 PMCID: PMC11237047 DOI: 10.1038/s41598-024-66506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought. Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.
Collapse
Affiliation(s)
- Nazia Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Arslan Haider
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zahid A, Ul Din K, Ahmad M, Hayat U, Zulfiqar U, Askri SMH, Anjum MZ, Maqsood MF, Aijaz N, Chaudhary T, Ali HM. Exogenous application of sulfur-rich thiourea (STU) to alleviate the adverse effects of cobalt stress in wheat. BMC PLANT BIOLOGY 2024; 24:126. [PMID: 38383286 PMCID: PMC10880287 DOI: 10.1186/s12870-024-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Heavy metal stress affects crop growth and yields as wheat (Triticum aestivum L.) growth and development are negatively affected under heavy metal stress. The study examined the effect of cobalt chloride (CoCl2) stress on wheat growth and development. To alleviate this problem, a pot experiment was done to analyze the role of sulfur-rich thiourea (STU) in accelerating the defense system of wheat plants against cobalt toxicity. The experimental treatments were, i) Heavy metal stress (a) control and (b) Cobalt stress (300 µM), ii) STU foliar applications; (a) control and (b) 500 µM single dose was applied after seven days of stress, and iii) Wheat varieties (a) FSD-2008 and (b) Zincol-2016. The results revealed that cobalt stress decreased chlorophyll a by 10%, chlorophyll b by 16%, and carotenoids by 5% while foliar application of STU increased these photosynthetic pigments by 16%, 15%, and 15% respectively under stress conditions as in contrast to control. In addition, cobalt stress enhances hydrogen peroxide production by 11% and malondialdehyde (MDA) by 10%. In comparison, STU applications at 500 µM reduced the production of these reactive oxygen species by 5% and by 20% by up-regulating the activities of antioxidants. Results have revealed that the activities of SOD improved by 29%, POD by 25%, and CAT by 28% under Cobalt stress. Furthermore, the foliar application of STU significantly increased the accumulation of osmoprotectants as TSS was increased by 23% and proline was increased by 24% under cobalt stress. Among wheat varieties, FSD-2008 showed better adaptation under Cobalt stress by showing enhanced photosynthetic pigments and antioxidant activities compared to Zincol-2016. In conclusion, the foliar-applied STU can alleviate the negative impacts of Cobalt stress by improving plant physiological attributes and upregulating the antioxidant defense system in wheat.
Collapse
Affiliation(s)
- Aiman Zahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhamad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Umer Hayat
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Nazish Aijaz
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences 2100, Godollo, Hungary.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|