1
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Wang P, Mak VCY, Cheung LWT. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis 2022; 10:199-211. [PMID: 37013053 PMCID: PMC10066341 DOI: 10.1016/j.gendis.2022.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor (IGF) axis plays important roles in cancer development and metastasis. The type 1 IGF receptor (IGF-1R) is a key member in the IGF axis and has long been recognized for its oncogenic role in multiple cancer lineages. Here we review the occurrence of IGF-1R aberrations and activation mechanisms in cancers, which justify the development of anti-IGF-1R therapies. We describe the therapeutic agents available for IGF-1R inhibition, with focuses on the recent or ongoing pre-clinical and clinical studies. These include antisense oligonucleotide, tyrosine kinase inhibitors and monoclonal antibodies which may be conjugated with cytotoxic drug. Remarkably, simultaneous targeting of IGF-1R and several other oncogenic vulnerabilities has shown early promise, highlighting the potential benefits of combination therapy. Further, we discuss the challenges in targeting IGF-1R so far and new concepts to improve therapeutic efficacy such as blockage of the nuclear translocation of IGF-1R.
Collapse
|
3
|
Tang Y, Jiang L, Zhao X, Hu D, Zhao G, Luo S, Du X, Tang W. FOXO1 inhibits prostate cancer cell proliferation via suppressing E2F1 activated NPRL2 expression. Cell Biol Int 2021; 45:2510-2520. [PMID: 34459063 DOI: 10.1002/cbin.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/11/2022]
Abstract
Previous studies in our lab suggest that nitrogen permease regulator 2-like (NPRL2) upregulation in prostate cancer is associated with malignant behavior and poor prognosis. However, the underlying mechanisms of NPRL2 dysregulation remain poorly understood. This study aimed to explore the transcription factors (TFs) contributing to NPRL2 dysregulation in prostate cancer. Potential TFs were identified using prostate tissue/cell-specific chromatin immunoprecipitation (ChIP)-seq data collected in the Cistrome Data Browser and Signaling Pathways Project. Dual-luciferase assay and ChIP-qPCR assay were conducted to assess the binding and activating effect of TFs on the gene promoter. Cell Counting Kit-8 and colony formation assays were performed to assess cell proliferation. Results showed that E2F1 is a TF that bound to the NPRL2 promoter and activated its transcription. NPRL2 inhibition significantly alleviated E2F1 enhanced cell proliferation. Kaplan-Meier survival analysis indicated that E2F1 upregulation was associated with unfavorable progression-free survival and disease-specific survival. FOXO1 interacted and E2F1 in both PC3 and LNCaP cells and weakened the binding of E2F1 to the NPRL2 promoter. Functionally, FOXO1 overexpression significantly slowed the proliferation of PC3 and LNCaP cells and also decreased E2F1 enhanced cell proliferation. In summary, this study revealed a novel FOXO1/E2F1-NPRL2 regulatory axis in prostate cancer. E2F1 binds to the NPRL2 promoter and activates its transcription, while FOXO1 interacts with E2F1 and weakens its transcriptional activating effects. These findings help expand our understanding of the prostate cancer etiology and suggest that the FOXO1/E2F1-NPRL2 signaling axis might be a potential target.
Collapse
Affiliation(s)
- Yu Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guozhi Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Wang G, Huang Y, Yang F, Tian X, Wang K, Liu L, Fan Y, Li X, Li L, Shi B, Hao Y, Xia C, Nie Q, Xin Y, Shi Z, Ma L, Xu D, Liu C. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer. Aging (Albany NY) 2020; 12:2030-2048. [PMID: 32007952 PMCID: PMC7041758 DOI: 10.18632/aging.102718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The AKT/mTOR pathway is critical for bladder cancer (BC) pathogenesis and is hyper-activated during BC progression. In the present study, we identified a novel positive feedback loop involving oncogenic factors histone methyltransferase SMYD3, insulin-like growth factor-1 receptor (IGF-1R), AKT, and E2F-1. SMYD3 expression was significantly up-regulated in BC tumors and positively associated with histological grade, lymph node metastasis, and shorter patient survival. Depletion of SMYD3 inhibited BC cell proliferation, colony formation, migration, invasion, and xenograft tumor growth. Mechanistically, SMYD3 inhibition led to the diminished AKT/mTOR signaling activity, thereby triggering deleterious effects on BC cells. Furthermore, SMYD3 directly activates the expression of IGF-1R, a critical activator of AKT in BC, by inducing hyper-methylation of histone H3-K4 and subsequent chromatin remodeling in the IGF-1R promoter region. On the other hand, E2F-1, a downstream factor of the AKT pathway, binds to the E2F-1 binding motifs at the SMYD3 promoter and consequently induces SMYD3 transcription and expression. Thus, SMYD3/IGF-1R/AKT/E2F-1 forms a positive feedback loop leading to the hyper-activated AKT signaling. Our findings provide not only profound insights into SMYD3-mediated oncogenic activity but also present a unique avenue for treating BC by directly disrupting this signaling circuit.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yi Huang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Feilong Yang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Xiaojun Tian
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Kun Wang
- Department of Urology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Lab for Cancer Prevention and Therapy, Tianjin, China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Yidong Fan
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Xiaofeng Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Luchao Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Benkang Shi
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Yichang Hao
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Chuanyou Xia
- Department of Medicine, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Qingsheng Nie
- Department of Urology, The Central Hospital of Zibo, Zibo, China
| | - Yue Xin
- Department of Urology, Chifeng University Second Hospital, Chifeng, China
| | - Zhenfeng Shi
- Department of Urology, The People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.,Karolinska Institute-Shandong University Collaborative Laboratory for Cancer and Stem Cell Research, Jinan, China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Chun JN, Cho M, Park S, So I, Jeon JH. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochim Biophys Acta Rev Cancer 2019; 1873:188336. [PMID: 31870703 DOI: 10.1016/j.bbcan.2019.188336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The transcription factor E2F1 plays a crucial role in mediating multiple cancer hallmark capabilities that regulate cell cycle, survival, apoptosis, metabolism, and metastasis. Aberrant activation of E2F1 is closely associated with a poor clinical outcome in various human cancers. However, E2F1 has conflictingly been reported to exert tumor suppressive activity, raising a question as to the nature of its substantive role in the control of cell fate. In this review, we summarize deregulated E2F1 activity and its role in prostate cancer. We highlight the recent advances in understanding the molecular mechanism by which E2F1 regulates the development and progression of prostate cancer, providing insight into how cell context or data interpretation shapes the role of E2F1 in prostate cancer. This review will aid in translating biomedical knowledge into therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
6
|
Gusscott S, Tamiro F, Giambra V, Weng AP. Insulin-like growth factor (IGF) signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100652. [PMID: 31543360 DOI: 10.1016/j.jbior.2019.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer, characterized by an uncontrolled expansion and accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and occupy the bone marrow compartment, thereby interfering with the production of normal blood cells. Pediatric T-ALL is curable with intensive chemotherapy, but there are significant, long-term side effects and ~20% of patients suffer relapse for which there are limited treatment options. Adult T-ALL in contrast is largely incurable and refractory/relapsed disease is common despite multi-agent chemotherapy (5-year overall survival of ~40%), and thus new therapeutic targets are needed. We have reported previously on the role of insulin-like growth factor (IGF) signaling in T-ALL, and shown that it exerts potent phenotypes in both leukemia stem cell and bulk tumor cell populations. Modulators of IGF signaling may thus prove useful in improving outcomes in patients with T-ALL. In this review, we summarize the most recent findings relating to IGF signaling in T-ALL and outline therapeutic options using clinically relevant IGF signaling modulators.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Francesco Tamiro
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
7
|
Lee CJ, Kang D, Lee S, Lee S, Kang J, Kim S. In silico experiment system for testing hypothesis on gene functions using three condition specific biological networks. Methods 2018; 145:10-15. [PMID: 29758273 DOI: 10.1016/j.ymeth.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Abstract
Determining functions of a gene requires time consuming, expensive biological experiments. Scientists can speed up this experimental process if the literature information and biological networks can be adequately provided. In this paper, we present a web-based information system that can perform in silico experiments of computationally testing hypothesis on the function of a gene. A hypothesis that is specified in English by the user is converted to genes using a literature and knowledge mining system called BEST. Condition-specific TF, miRNA and PPI (protein-protein interaction) networks are automatically generated by projecting gene and miRNA expression data to template networks. Then, an in silico experiment is to test how well the target genes are connected from the knockout gene through the condition-specific networks. The test result visualizes path from the knockout gene to the target genes in the three networks. Statistical and information-theoretic scores are provided on the resulting web page to help scientists either accept or reject the hypothesis being tested. Our web-based system was extensively tested using three data sets, such as E2f1, Lrrk2, and Dicer1 knockout data sets. We were able to re-produce gene functions reported in the original research papers. In addition, we comprehensively tested with all disease names in MalaCards as hypothesis to show the effectiveness of our system. Our in silico experiment system can be very useful in suggesting biological mechanisms which can be further tested in vivo or in vitro. AVAILABILITY http://biohealth.snu.ac.kr/software/insilico/.
Collapse
Affiliation(s)
- Chai-Jin Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Dongwon Kang
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea; Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea; Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Poli G, Cantini G, Armignacco R, Fucci R, Santi R, Canu L, Nesi G, Mannelli M, Luconi M. Metformin as a new anti-cancer drug in adrenocortical carcinoma. Oncotarget 2018; 7:49636-49648. [PMID: 27391065 PMCID: PMC5226535 DOI: 10.18632/oncotarget.10421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare heterogeneous malignancy with poor prognosis. Since radical surgery is the only available treatment, more specific and effective drugs are urgently required. The anti-diabetic drug metformin has been associated with a decreased cancer prevalence and mortality in several solid tumors, prompting its possible use for ACC treatment. This paper evaluates the in vitro and in vivo anti-cancer effects of metformin using the ACC cell model H295R. Metformin treatment significantly reduces cell viability and proliferation in a dose- and time-dependent manner and associates with a significant inhibition of ERK1/2 and mTOR phosphorylation/activation, as well as with stimulation of AMPK activity. Metformin also triggers the apoptotic pathway, shown by the decreased expression of Bcl-2 and HSP27, HSP60 and HSP70, and enhanced membrane exposure of annexin V, resulting in activation of caspase-3 apoptotic effector. Metformin interferes with the proliferative autocrine loop of IGF2/IGF-1R, which supports adrenal cancer growth. Finally, in the ACC xenograft mouse model, obtained by subcutaneous injection of H295R cells, metformin intraperitoneal administration inhibits tumor growth, confirmed by the significant reduction of Ki67%. Our data suggest that metformin inhibits H295R cell growth both in vitro and in vivo. Further preclinical studies are necessary to validate the potential anti-cancer effect of metformin in patients affected by ACC.
Collapse
Affiliation(s)
- Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Armignacco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rossella Fucci
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
9
|
Werner H, Meisel-Sharon S, Bruchim I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer 2018; 17:28. [PMID: 29455671 PMCID: PMC5817802 DOI: 10.1186/s12943-018-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel. .,Yoran Institute for Human Genome Research, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Shilhav Meisel-Sharon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 38100, affiliated with the Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Yuan J, Yin Z, Tao K, Wang G, Gao J. Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy. Oncol Lett 2017; 15:41-47. [PMID: 29285186 DOI: 10.3892/ol.2017.7276] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a primary cause of chemotherapeutic failure; however, how this resistance develops is complex. A comprehensive understanding of chemotherapeutic resistance mechanisms may aid in identifying more effective drugs and improve the survival rates of patients with cancer. Insulin-like growth factor 1 receptor (IGF1R), a member of the insulin receptor family, has been extensively assessed for biological activity, and its putative contribution to tumor cell development and progression. Furthermore, researchers have attended to drugs that target IGF1R since IGF1R functions as a membrane receptor. However, how IGF1R participates in chemotherapeutic resistance remains unclear. Therefore, the present study described the IGF1R gene and its associated signaling pathways, and offered details of IGF1R-induced tumor chemoresistance associated with promoting cell proliferation, inhibition of apoptosis, regulation of ATP-binding cassette transporter proteins and interactions with the extracellular matrix. The present study offered additional explanations for tumor chemotherapy resistance and provided a theoretical basis of IGF1R and its downstream pathways for future possible chemotherapy treatment options.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhijie Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobing Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
11
|
Sharon SM, Pozniak Y, Geiger T, Werner H. TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1. Oncotarget 2016; 7:51375-51392. [PMID: 27285981 PMCID: PMC5239482 DOI: 10.18632/oncotarget.9837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/22/2016] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study we show that TMPRSS2-ERG mediates its tumorigenic effects through regulation of IGF1R gene expression. Silencing of T-ERG in VCaP cells resulted in downregulation of both IGF1R and Sp1, a critical IGF1R regulator. Co-immunoprecipitation assays revealed a physical interaction between transcription factors ERG and Sp1, with potential relevance in IGF1R gene regulation. In addition, transactivation of the IGF1R gene by ERG was mediated at the level of transcription, as indicated by results of promoter assays. To identify new co-activators of the TMPRSS2-ERG fusion protein we performed mass spectrometry-based proteomic analyses. Among other interactors, we identified AP-2 complex subunit mu (AP2M1) and caveolin-1 (CAV1) in association with ERG in cell nuclei. These proteins play a mechanistic role in IGF1R internalization. Our analyses are consistent with a potential novel function of TMPRSS2-ERG as a major regulator of IGF1R gene expression. Results may impinge upon ongoing efforts to target the IGF1R in the clinics.
Collapse
Affiliation(s)
- Shilhav Meisel Sharon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Werner H, Sarfstein R, LeRoith D, Bruchim I. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways. Front Oncol 2016; 6:159. [PMID: 27446805 PMCID: PMC4917523 DOI: 10.3389/fonc.2016.00159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023] Open
Abstract
Clinical, epidemiological, and experimental evidence indicate that the insulin-like growth factors (IGFs) are important mediators in the biochemical chain of events that lead from a phenotypically normal to a neoplastic cell. The IGF1 receptor (IGF1R), which mediates the biological actions of IGF1 and IGF2, exhibits potent pro-survival and antiapoptotic activities. The IGF1R is highly expressed in most types of cancer and is regarded as a promising therapeutic target in oncology. p53 is a transcription factor with tumor suppressor activity that is usually activated in response to DNA damage and other forms of cellular stress. On the basis of its protective activities, p53 is commonly regarded as the guardian of the genome. We provide evidence that the IGF signaling axis and p53 genome protection pathways are tightly interconnected. Wild-type, but not mutant, p53 suppresses IGF1R gene transcription, leading to abrogation of the IGF signaling network, with ensuing cell cycle arrest. Gain-of-function, or loss-of-function, mutations of p53 in tumor cells may disrupt its inhibitory activity, thus generating oncogenic molecules capable of transactivating the IGF1R gene. The interplay between the IGF1 and p53 pathways is also of major relevance in terms of metabolic regulation, including glucose transport and glycolysis. A better understanding of the complex physical and functional interactions between these important signaling pathways will have major basic and translational relevance.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Derek LeRoith
- Diabetes and Metabolism Clinical Research Center, Rambam Health Care Center , Haifa , Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center , Hadera , Israel
| |
Collapse
|
13
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
14
|
Vishwamitra D, Curry CV, Alkan S, Song YH, Gallick GE, Kaseb AO, Shi P, Amin HM. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer 2015; 14:53. [PMID: 25884514 PMCID: PMC4415347 DOI: 10.1186/s12943-015-0324-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Background The type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase promotes the survival of an aggressive subtype of T-cell lymphoma by interacting with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncogenic protein. NPM-ALK+ T-cell lymphoma exhibits much higher levels of IGF-IR than normal human T lymphocytes. The mechanisms underlying increased expression of IGF-IR in this lymphoma are not known. We hypothesized that upregulation of IGF-IR could be attributed to previously unrecognized defects that inherently exist in the transcriptional machinery in NPM-ALK+ T-cell lymphoma. Methods and results Screening studies showed substantially lower levels of the transcription factors Ikaros isoform 1 (Ik-1) and myeloid zinc finger 1 (MZF1) in NPM-ALK+ T-cell lymphoma cell lines and primary tumor tissues from patients than in human T lymphocytes. A luciferase assay supported that Ik-1 and MZF1 suppress IGF-IR gene promoter. Furthermore, ChIP assay showed that these transcription factors bind specific sites located within the IGF-IR gene promoter. Forced expression of Ik-1 or MZF1 in the lymphoma cells decreased IGF-IR mRNA and protein. This decrease was associated with downregulation of pIGF-IR, and the phosphorylation of its interacting proteins IRS-1, AKT, and NPM-ALK. In addition, overexpression of Ik-1 and MZF1 decreased the viability, proliferation, migration, and anchorage-independent colony formation of the lymphoma cells. Conclusions Our results provide novel evidence that the aberrant decreases in Ik-1 and MZF1 contribute significantly to the pathogenesis of NPM-ALK+ T-cell lymphoma through the upregulation of IGF-IR expression. These findings could be exploited to devise new strategies to eradicate this lymphoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0324-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA.
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Vieira M, Gomes JR, Saraiva MJ. Transthyretin Induces Insulin-like Growth Factor I Nuclear Translocation Regulating Its Levels in the Hippocampus. Mol Neurobiol 2014; 51:1468-79. [PMID: 25084758 PMCID: PMC4434863 DOI: 10.1007/s12035-014-8824-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 01/02/2023]
Abstract
Transthyretin (TTR) is the carrier protein of thyroxine (T4) and binds to retinol-binding protein (RBP)-retinol complex. It is mainly synthesized by both liver and choroid plexuses of the brain. Besides these properties, it has a neuroprotective role in several contexts such as Alzheimer’s disease (AD) and cerebral ischemia. Activation of insulin-like growth factor receptor I (IGF-IR) pathways and increased levels of TTR are associated with absence of neurodegeneration in an AD mouse model. In the present study, we verified that young/adult TTR null mice had decreased levels of IGF-IR in the hippocampus, but not in choroid plexus when compared with wild-type age-matched controls. Moreover, we could also demonstrate that conditional silencing of peripheral TTR did not have any influence in hippocampal IGF-IR levels, indicating that TTR effect on IGF-IR levels is due to TTR mainly synthesized in the choroid plexus. In vitro cellular studies, using NIH3T3 cell line and primary cultured hippocampal neurons, we showed that TTR upregulates IGF-IR at the transcription and translation levels and that is dependent on receptor internalization. Using a GFP-IGF-IR fusion protein, we also found that TTR triggers IGF-IR nuclear translocation in cultured neurons. We could also see an enrichment of IGF-IR in the nuclear fraction, after TTR stimulation in NIH3T3 cells, indicating that IGF-IR regulation, triggered by TTR is induced by nuclear translocation. In summary, the results provide evidence of a new role of TTR as a transcription inducer of IGF-IR in central nervous system (CNS), unveiling a new role in neuroprotection.
Collapse
Affiliation(s)
- Marta Vieira
- Molecular Neurobiology Unit, IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | | | | |
Collapse
|
16
|
Werner H, Sarfstein R. Transcriptional and epigenetic control of IGF1R gene expression: implications in metabolism and cancer. Growth Horm IGF Res 2014; 24:112-118. [PMID: 24863809 DOI: 10.1016/j.ghir.2014.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
Abstract
IGF1R plays an important role in protection from apoptosis, regulation of cell growth, differentiation and oncogenic transformation. IGF1R aberrations lead to intrauterine and postnatal growth failure, microcephaly, mental retardation and deafness. High levels of IGF1R are detected in a diversity of human tumors. IGF1R gene transcription is controlled by complex interactions involving DNA-binding and non DNA-binding transcription factors. This review highlights selected examples of a series of tumor suppressors, including the breast cancer gene-1 (BRCA1), p53, the Wilm's tumor protein-1 (WT1) and the von Hippel-Lindau gene (VHL), whose mechanisms of action involve regulation of IGF1R gene expression. IGF1R gene transcription is also dependent on the presence of stimulatory nuclear proteins, including zinc-finger protein Sp1, EWS-WT1, E2F1, Krüppel-like factor-6 (KLF6), high-mobility group A1 (HMGA1), and others. Loss-of-function of tumor suppressor genes, usually caused by mutations, may result in non-functional proteins unable to control IGF1R promoter activity. Impaired regulation of the IGF1R gene is linked to defective cell division, chromosomal instability and increased incidence of cancer.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Wu JG, Yu JW, Wu HB, Zheng LH, Ni XC, Li XQ, Du GY, Jiang BJ. Expressions and clinical significances of c-MET, p-MET and E2f-1 in human gastric carcinoma. BMC Res Notes 2014; 7:6. [PMID: 24393368 PMCID: PMC3895664 DOI: 10.1186/1756-0500-7-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 12/31/2013] [Indexed: 12/18/2022] Open
Abstract
Background To investigate on the expressions and the clinical significances of hepatocyte growth factor receptor (c-MET), phosphorylated c-MET (p-MET) and e2f-1 transcription factor in primary lesion of gastric adenocarcinoma (GC). Method Tissue samples from the primary lesion of GC in patients who accepted D2/D3 radical gastrectomy with R0/R1 resection were stained by immunohistochemistry of c-MET, p-MET, e2f-1 and Ki-67. The univariate and the multivariate analyses involving in clinicopathological parameters and prognostic factors were evaluated. Results The positivity rates for c-MET (66.12%, 80 cases/121 cases), p-MET (59.50%, 72 cases/121 cases), e2f-1 (38.84%, 47 cases/121 cases) and Ki-67 (72.73%, 88 cases/121 cases) in primary lesion of GC was significantly higher than that in non-cancerous tissue at 5 cm places far from the margin of primary lesion (P < 0.05, respectively). The deeper tumor invasion, the severer lymph node metastasis, the later stage of TNM and the higher expression of Ki-67 was respectively an independent risk factor for the higher expression of c-MET or p-MET, but the younger age and the shorter survival time was an independent risk factor for the higher expression of e2f-1 respectively. Survival analysis showed that the worse prognosis could be observed in the patients with the combination of both c-MET-positive and e2f-1-negative (P = 0.038) or both p-MET-positive and e2f-1-negative (P = 0.042). Cox analysis demonstrated that the severer lymphatic node metastasis and the higher positivity rate of c-MET, p-MET or e2f-1 were an independent prognosis factor respectively. The higher expression of e2f-1 was identified in patients with Stage I-II, which correlated with a shorter survival time. Survival analysis also revealed that the prognosis of patients with positive expression of e2f-1 at Stage I-II was significantly worse than that in patients with negative expression of e2f-1 (χ2 = 13.437, P = 0.001). However, in the cases with Stage III-IV, no significant difference could be identified in the prognostic comparison between positive and negative expressions of e2f-1. Conclusions The expression of c-MET or p-MET is an independent prognosis factor. It has been observed that the higher expression of e2f-1 occurred in the early stages while the lower expression of it in the later stages in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo-jian Jiang
- 1st Department of General Surgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, No, 280, Mohe Road, Shanghai 201900, China.
| |
Collapse
|
18
|
Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:231-45. [DOI: 10.1016/j.cbpa.2012.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
19
|
Attias-Geva Z, Bentov I, Kidron D, Amichay K, Sarfstein R, Fishman A, Bruchim I, Werner H. p53 Regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy. Eur J Cancer 2011; 48:1570-80. [PMID: 22033326 DOI: 10.1016/j.ejca.2011.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/02/2011] [Accepted: 09/14/2011] [Indexed: 01/22/2023]
Abstract
The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance.
Collapse
Affiliation(s)
- Zohar Attias-Geva
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tumor suppressors govern insulin-like growth factor signaling pathways: implications in metabolism and cancer. Oncogene 2011; 31:2703-14. [DOI: 10.1038/onc.2011.447] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, Morrissey C, Zhang X, Comstock CES, Witkiewicz AK, Gomella L, Knudsen ES, Nelson PS, Knudsen KE. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 2010; 120:4478-92. [PMID: 21099110 DOI: 10.1172/jci44239] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/13/2010] [Indexed: 12/20/2022] Open
Abstract
Retinoblastoma (RB; encoded by RB1) is a tumor suppressor that is frequently disrupted in tumorigenesis and acts in multiple cell types to suppress cell cycle progression. The role of RB in tumor progression, however, is poorly defined. Here, we have identified a critical role for RB in protecting against tumor progression through regulation of targets distinct from cell cycle control. In analyses of human prostate cancer samples, RB loss was infrequently observed in primary disease and was predominantly associated with transition to the incurable, castration-resistant state. Further analyses revealed that loss of the RB1 locus may be a major mechanism of RB disruption and that loss of RB function was associated with poor clinical outcome. Modeling of RB dysfunction in vitro and in vivo revealed that RB controlled nuclear receptor networks critical for tumor progression and that it did so via E2F transcription factor 1-mediated regulation of androgen receptor (AR) expression and output. Through this pathway, RB depletion induced unchecked AR activity that underpinned therapeutic bypass and tumor progression. In agreement with these findings, disruption of the RB/E2F/nuclear receptor axis was frequently observed in the transition to therapy resistance in human disease. Together, these data reveal what we believe to be a new paradigm for RB function in controlling prostate tumor progression and lethal tumor phenotypes.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|