1
|
Araya P, Kinning KT, Coughlan C, Smith KP, Granrath RE, Enriquez-Estrada BA, Worek K, Sullivan KD, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Galbraith MD, Potter H, Espinosa JM. IGF1 deficiency integrates stunted growth and neurodegeneration in Down syndrome. Cell Rep 2022; 41:111883. [PMID: 36577365 PMCID: PMC9876612 DOI: 10.1016/j.celrep.2022.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.
Collapse
Affiliation(s)
- Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristine Wolter-Warmerdam
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Francis Hickey
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
[Estimation of fat mass by anthropometric indicators in young people with Down syndrome]. NUTR HOSP 2021; 38:1040-1046. [PMID: 33845583 DOI: 10.20960/nh.03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION the assessment of body composition is relevant and useful for designing interventions for healthy lifestyles and nutritional strategies. OBJECTIVE our goal was to verify the relationships between adiposity indicators with fat mass (FM), and to validate equations that allow predicting FM in young people with Down syndrome (SD). METHODS a cross-sectional study was carried out in 48 young people with DS (24 men and 24 women). Weight, height, waist circumference (WC), and hip circumference (HC) were evaluated. Body mass index (BMI), body adiposity index (BAI), waist-to-hip index (WHI), and waist-to-height index (WHtR) were calculated. FM was evaluated by dual energy X-ray absorptiometry (DXA). RESULTS age in men was 19.3 ± 3.0 years, and in women it was 18.9 ± 1.9 years; weight was 73.6 ± 14.3 kg in men and 75.8 ± 20.3 kg in women, and height in men was 168.9 ± 6.5 cm, and in women it was 156.3 ± 6.2 cm. In males the correlations between FM (DXA) with BMI, WC, HC, WHtR, BAI and WHtR ranged from r = 0.01 to r = 0.89, and in females from r = 0.10 to r = 0.97. The highest correlations were observed with BMI and WC in both sexes (males r = 0.78 to 0.92, and females r = 0.83 to 0.97). Regression equations were generated to estimate FM in males (R2 = 84 %) and in females (R2 = 96 %). Percentiles were calculated for MG per DXA and for each equation. CONCLUSIONS there were significant positive correlations between BMI and WC with FM. These indicators were decisive for developing equations that estimate FM in young people with DS. The results suggest its potential use and application to evaluate, classify and monitor body fat levels in clinical and epidemiological contexts.
Collapse
|
3
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|