1
|
Sun L, Gang X, Li F, Guo W, Cui M, Wang G. Effects of Growth Hormone on Osteoarthritis Development. Horm Metab Res 2024; 56:761-769. [PMID: 39510098 DOI: 10.1055/a-2411-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary degeneration of articular cartilage and bone dysplasia, is associated with various risk factors and is the leading cause of musculoskeletal pain and disability, severely impacting the quality of life. Growth hormone (GH), secreted by the anterior pituitary gland, is essential in mediating the growth and development of bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone decreases with age. A negative correlation between GH and OA suggests that GH may be related to the occurrence and development of OA. Considering that abnormal growth hormone levels can lead to many diseases related to bone growth, we focus on the relationship between GH and OA. In this review, we will explain the effects of GH on the growth and deficiency of bone and cartilage based on the local pathological changes of osteoarthritis. In addition, the potential feasibility of treating OA with GH will be further explored and summarized.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mengzhao Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Babaei M, Nasernejad B, Sharifikolouei E, Shokrgozar MA, Bonakdar S. Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering. ACS OMEGA 2022; 7:26353-26367. [PMID: 35936447 PMCID: PMC9352215 DOI: 10.1021/acsomega.2c02206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 06/03/2023]
Abstract
Physical and chemical parameters that mimic the physiological niche of the human body have an influence on stem cell fate by creating directional signals to cells. Micro/nano cell-patterned polydimethylsiloxane (PDMS) substrates, due to their ability to mimic the physiological niche, have been widely used in surface modification. Integration of other factors such as the biochemical coating on the surface can achieve more similar microenvironmental conditions and promote stem cell differentiation to the target cell line. Herein, we investigated the effect of physical topography, chemical functionalization by acid bone lysate (ABL) nanocoating, and the combined functionalization of the bone proteins' nanocoated surface and the topographically modified surface. We prepared four distinguishing surfaces: plain PDMS, physically modified PDMS by 3D cell topography patterning, chemically modified PDMS with bone protein nanocoating, and chemically modified nano 3D cell-imprinted PDMS by bone proteins (ABL). Characterization of extracted ABL was carried out by Bradford staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, followed by the MTT assay for evaluation of cell viability on ABL-coated PDMS. Moreover, field emission scanning electron microscopy and profilometry were used for the determination of optimal coating thickness, and the appropriate coating concentration was identified and used in the study. The binding and retention of ABL to PDMS were confirmed by Fourier transform infrared spectroscopy and bicinchoninic acid assay. Sessile drop static water contact angle measurements on substrates showed that the combined chemical functionalization and nano 3D cell-imprinting on the PDMS surface improved surface wettability by 66% compared to plain PDMS. The results of ALP measurement, alizarin red S staining, immunofluorescence staining, and real-time PCR showed that the nano 3D cell-imprinted PDMS surface functionalized by extracted bone proteins, ABL, is able to guide the fate of adipose derived stem cellss toward osteogenic differentiation. Eventually, chemical modification of the cell-imprinted PDMS substrate by bone protein extraction not only improved the cell adhesion and proliferation but also contributed to the topographical effect itself and caused a significant synergistic influence on the process of osteogenic differentiation.
Collapse
Affiliation(s)
- Mahrokh Babaei
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Bahram Nasernejad
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Elham Sharifikolouei
- Department
of Applied Science and Technology, Politecnico
di Torino, Turin 10129, Italy
| | | | - Shahin Bonakdar
- National
Cell Bank, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
3
|
Taihi I, Pilon C, Cohen J, Berdal A, Gogly B, Nassif A, Fournier BP. Efficient isolation of human gingival stem cells in a new serum-free medium supplemented with platelet lysate and growth hormone for osteogenic differentiation enhancement. Stem Cell Res Ther 2022; 13:125. [PMID: 35337377 PMCID: PMC8951723 DOI: 10.1186/s13287-022-02790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The use of distant autografts to restore maxillary bone defects is clinically challenging and has unpredictable outcomes. This variation may be explained by the embryonic origin of long bone donor sites, which are derived from mesoderm, whereas maxillary bones derive from neural crest. Gingival stem cells share the same embryonic origin as maxillary bones. Their stemness potential and ease of access have been repeatedly shown. One limitation in human cell therapy is the use of foetal calf serum during cell isolation and culture. To overcome this problem, a new serum-free medium enriched with an alternative to foetal calf serum, i.e., platelet lysate, needs to be adapted to clinical grade protocols. METHODS Different serum-free media enriched with platelet lysate at various concentrations and supplemented with different growth factors were developed and compared to media containing foetal calf serum. Phenotypic markers, spontaneous DNA damage, and stem cell properties of gingival stem cells isolated in platelet lysate or in foetal calf serum were also compared, as were the immunomodulatory properties of the cells by co-culturing them with activated peripheral blood monocellular cells. T-cell proliferation and phenotype were also assessed by flow cytometry using cell proliferation dye and specific surface markers. Data were analysed with t-test for two-group comparisons, one-way ANOVA for multigroup comparisons and two-way ANOVA for repeated measures and multigroup comparisons. RESULTS Serum-free medium enriched with 10% platelet lysate and growth hormone yielded the highest expansion rate. Gingival stem cell isolation and thawing under these conditions were successful, and no significant DNA lesions were detected. Phenotypic markers of mesenchymal stem cells and differentiation capacities were conserved. Gingival stem cells isolated in this new serum-free medium showed higher osteogenic differentiation potential compared to cells isolated in foetal calf serum. The proportion of regulatory T cells obtained by co-culturing gingival stem cells with activated peripheral blood monocellular cells was similar between the two types of media. CONCLUSIONS This new serum-free medium is well suited for gingival stem cell isolation and proliferation, enhances osteogenic capacity and maintains immunomodulatory properties. It may allow the use of gingival stem cells in human cell therapy for bone regeneration in accordance with good manufacturing practice guidelines.
Collapse
Affiliation(s)
- Ihsène Taihi
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, site hospitalier Charles Foix-Pitié Salpêtrière, 94200, Ivry, France.
| | - Caroline Pilon
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - José Cohen
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Bruno Gogly
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ali Nassif
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Benjamin Philippe Fournier
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France.
| |
Collapse
|
4
|
Ganjian M, Modaresifar K, Rompolas D, Fratila-Apachitei LE, Zadpoor AA. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior. Acta Biomater 2022; 140:717-729. [PMID: 34875357 DOI: 10.1016/j.actbio.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Developing high-throughput nanopatterning techniques that also allow for precise control over the dimensions of the fabricated features is essential for the study of cell-nanopattern interactions. Here, we developed a process that fulfills both of these criteria. Firstly, we used electron-beam lithography (EBL) to fabricate precisely controlled arrays of submicron pillars with varying values of interspacing on a large area of fused silica. Two types of etching procedures with two different systems were developed to etch the fused silica and create the final desired height. We then studied the interactions of preosteoblasts (MC3T3-E1) with these pillars. Varying interspacing was observed to significantly affect the morphological characteristics of the cell, the organization of actin fibers, and the formation of focal adhesions. The expression of osteopontin (OPN) significantly increased on the patterns, indicating the potential of the pillars for inducing osteogenic differentiation. The EBL pillars were thereafter used as master molds in two subsequent processing steps, namely soft lithography and thermal nanoimprint lithography for high-fidelity replication of the pillars on the substrates of interest. The molding parameters were optimized to maximize the fidelity of the generated patterns and minimize the wear and tear of the master mold. Comparing the replicated feature with those present on the original mold confirmed that the geometry and dimensions of the replicated pillars closely resemble those of the original ones. The method proposed in this study, therefore, enables the precise fabrication of submicron- and nanopatterns on a wide variety of materials that are relevant for systematic cell studies. STATEMENT OF SIGNIFICANCE: Submicron pillars with specific dimensions on the bone implants have been proven to be effective in controlling cell behaviors. Nowadays, numerous methods have been proposed to produce bio-instructive submicron-topographies. However, most of these techniques are suffering from being low-throughput, low-precision, and expensive. Here, we developed a high-throughput nanopatterning technique that allows for control over the dimensions of the features for the study of cell-nanotopography interactions. Assessing the adaptation of preosteoblast cells showed the potential of the pillars for inducing osteogenic differentiation. Afterward, the pillars were used for high-fidelity replication of the bio-instructive features on the substrates of interest. The results show the advantages of nanoimprint lithography as a unique technique for the patterning of large areas of bio-instructive surfaces.
Collapse
|
5
|
Reengineering Bone-Implant Interfaces for Improved Mechanotransduction and Clinical Outcomes. Stem Cell Rev Rep 2020; 16:1121-1138. [DOI: 10.1007/s12015-020-10022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Bolamperti S, Guidobono F, Rubinacci A, Villa I. The Role of Growth Hormone in Mesenchymal Stem Cell Commitment. Int J Mol Sci 2019; 20:ijms20215264. [PMID: 31652811 PMCID: PMC6862273 DOI: 10.3390/ijms20215264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growth hormone (GH) is best known for its prominent role in promoting prepubertal growth and in regulating body composition and metabolism during adulthood. In recent years, the possible role of GH in the modulation of mesenchymal stem cell (MSC) commitment has gained interest. MSCs, characterized by active self-renewal and differentiation potential, express GH receptors. In MSCs derived from different adult tissues, GH induces an inhibition of adipogenic differentiation and favors MSC differentiation towards osteogenesis. This activity of GH indicates that regulation of body composition by GH has already started in the tissue progenitor cells. These findings have fostered research on possible uses of MSCs treated with GH in those pathologies, where a lack of or delays in bone repair occur. After an overview of GH activities, this review will focus on the research that has characterized GH’s effects on MSCs and on preliminary studies on the possible application of GH in bone regenerative medicine.
Collapse
Affiliation(s)
- Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Francesca Guidobono
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy.
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics & Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
7
|
Widyaratih DS, Hagedoorn PL, Otten LG, Ganjian M, Tümer N, Apachitei I, Hagen CW, Fratila-Apachitei LE, Zadpoor AA. Towards osteogenic and bactericidal nanopatterns? NANOTECHNOLOGY 2019; 30:20LT01. [PMID: 30802893 DOI: 10.1088/1361-6528/ab0a3a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bactericidal nanopatterns is ongoing but no controlled nanopatterns with dual osteogenic and bactericidal functionalities have been found yet. In this study, electron beam induced deposition (EBID) was used for accurate and reproducible decoration of silicon surfaces with four different types of nanopatterns. The features used in the first two nanopatterns (OST1 and OST2) were derived from osteogenic nanopatterns known to induce osteogenic differentiation of stem cells in the absence of osteogenic supplements. Two modifications of these nanopatterns were also included (OST2-SQ, OST2-H90) to study the effects of controlled disorder and lower nanopillar heights. An E. coli K-12 strain was used for probing the response of bacteria to the nanopatterns. Three nanopatterns (OST2, OST2-SQ, and OST2-H90) exhibited clear bactericidal behavior as evidenced by severely damaged cells and disrupted formation of extracellular polymeric substance. These findings indicate that controlled nanopatterns with features derived from osteogenic ones can have bactericidal activity and that EBID represents an enabling nanotechnology to achieve (multi)functional nanopatterns for bone implants.
Collapse
Affiliation(s)
- Dwisetya S Widyaratih
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628CD, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci 2019; 76:505-521. [PMID: 30390116 PMCID: PMC11105278 DOI: 10.1007/s00018-018-2945-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
It is well known that biomaterial topography can exert a profound influence on various cellular functions such as migration, polarization, and adhesion. With the development and refinement of manufacturing technology, much research has recently been focused on substrate topography-induced cell differentiation, particularly in the field of tissue engineering. Even without biological and chemical stimuli, the differentiation of stem cells can also be initiated by various biomaterials with different topographic features. However, the underlying mechanisms of this biological phenomenon remain elusive. During the past few decades, many researchers have demonstrated that cells can sense the topography of materials through the assembly and polymerization of membrane proteins. Following the activation of RHO, TGF-b or FAK signaling pathways, cells can be induced into various differentiation states. But these signaling pathways often coincide with canonical mechanical transduction pathways, and no firm conclusion has been reached among researchers in this field on topography-specific signaling pathways. On the other hand, some substrate topographies are reported to have the ability to inhibit differentiation and maintain the 'stemness' of stem cells. In this review, we will summarize the role of topography in musculoskeletal system regeneration and explore possible topography-related signaling pathways involved in cell differentiation.
Collapse
Affiliation(s)
- Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Maswikiti Ewetse Paul
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China.
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China.
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China.
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China.
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
9
|
Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E960. [PMID: 30469378 PMCID: PMC6266401 DOI: 10.3390/nano8110960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
In the process of bone regeneration, new bone formation is largely affected by physico-chemical cues in the surrounding microenvironment. Tissue cells reside in a complex scaffold physiological microenvironment. The scaffold should provide certain circumstance full of structural cues to enhance multipotent mesenchymal stem cell (MSC) differentiation, osteoblast growth, extracellular matrix (ECM) deposition, and subsequent new bone formation. This article reviewed advances in fabrication technology that enable the creation of biomaterials with well-defined pore structure and surface topography, which can be sensed by host tissue cells (esp., stem cells) and subsequently determine cell fates during differentiation. Three important cues, including scaffold pore structure (i.e., porosity and pore size), grain size, and surface topography were studied. These findings improve our understanding of how the mechanism scaffold microenvironmental cues guide bone tissue regeneration.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hongyuan Fan
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaowei Deng
- Department of Civil Engineering, The University of Hongkong, Pokfulam, Hongkong 999077, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Tao Yi
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4025083. [PMID: 30515396 PMCID: PMC6236916 DOI: 10.1155/2018/4025083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Osteogenic differentiation of cells has considerable clinical significance in bone defect treatment, and cell behavior is linked to extracellular matrix stiffness. This study aimed to determine how matrix stiffness affects cell morphology and subsequently regulates the osteogenic phenotype of osteogenesis precursor cells. Four PDMS substrates were prepared with stiffness corresponding to the elastic modulus ranging from 0.6 MPa to 2.7 MPa by altering the Sylgard 527 and Sylgard 184 concentrations. MC3T3-E1 cells were cultured on the matrices. Cell morphology, vinculin expression, and key osteogenic markers, Col I, OCN, OPN, and calcium nodule, were examined. The activity and expression level of Yes-associated protein (YAP) were evaluated. Results showed that cell spreading exhibited no correlation with the stiffness of matrix designed in this paper, but substratum stiffness did modulate MC3T3-E1 osteogenic differentiation. Col I, OPN, and OCN proteins were significantly increased in cells cultured on soft matrices compared with stiff matrices. Additionally, cells cultured on the 1:3 ratio matrices had more nodules than those on other matrices. Accordingly, cells on substrates with low stiffness showed enhanced expression of the osteogenic markers. Meanwhile, YAP expression was downregulated on soft substrates although the subcellular location was not affected. Our results provide evidence that matrix stiffness (elastic modulus ranging from 0.6 MPa to 2.7 MPa) affects the osteogenic differentiation of MC3T3-E1, but it is not that “the stiffer, the better” as showed in some of the previous studies. The optimal substrate stiffness may exist to promote osteoblast differentiation. Cell differentiation triggered by the changes in substrate stiffness may be independent of the YAP signal. This study has important implications for biomaterial design and stem cell-based tissue engineering.
Collapse
|
11
|
Kamguyan K, Katbab AA, Mahmoudi M, Thormann E, Zajforoushan Moghaddam S, Moradi L, Bonakdar S. An engineered cell-imprinted substrate directs osteogenic differentiation in stem cells. Biomater Sci 2018; 6:189-199. [PMID: 29189838 DOI: 10.1039/c7bm00733g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cell-imprinted poly(dimethylsiloxane)/hydroxyapatite nanocomposite substrate was fabricated to engage topographical, mechanical, and chemical signals to stimulate and boost stem cell osteogenic differentiation. The physicochemical properties of the fabricated substrates, with nanoscale resolution of osteoblast morphology, were probed using a wide range of techniques including scanning electron microscopy, atomic force microscopy, dynamic mechanical thermal analysis, and water contact angle measurements. The osteogenic differentiation capacity of the cultured stem cells on these substrates was probed by alizarin red staining, ALP activity, osteocalcin measurements, and gene expression analysis. The outcomes revealed that the concurrent roles of the surface patterns and viscoelastic properties of the substrate provide the capability of directing stem cell differentiation toward osteogenic phenotypes. Besides the physical and mechanical effects, we found that the chemical signaling of osteoinductive hydroxyapatite nanoparticles, embedded in the nanocomposite substrates, could further improve and optimize stem cell osteogenic differentiation.
Collapse
Affiliation(s)
- Khorshid Kamguyan
- Department of Polymer Engineering and Colour Technology, Amirkabir University of Technology, Tehran, 1599637111, Iran.
| | | | | | | | | | | | | |
Collapse
|
12
|
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, García-Cuesta EM, Rodríguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, Garin MI, Gomariz RP, Mellado M. Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis. Front Immunol 2018; 9:1165. [PMID: 29887869 PMCID: PMC5980961 DOI: 10.3389/fimmu.2018.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response.
Collapse
Affiliation(s)
- Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Gabriel Criado
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José M Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José Luis Pablos
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
13
|
Zemtsova EG, Yudintceva NM, Morozov PE, Valiev RZ, Smirnov VM, Shevtsov MA. Improved osseointegration properties of hierarchical microtopographic/nanotopographic coatings fabricated on titanium implants. Int J Nanomedicine 2018; 13:2175-2188. [PMID: 29692612 PMCID: PMC5903495 DOI: 10.2147/ijn.s161292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Titanium (Ti) implants are extensively used in reconstructive surgery and orthopedics. However, the intrinsic inertness of untreated Ti implants usually results in insufficient osseointegration. In order to improve the osteoconductivity properties of the implants, they are coated with hierarchical microtopographic/nanotopographic coatings employing the method of molecular layering of atomic layer deposition (ML-ALD). Results The analysis of the fabricated nanostructured relief employing scanning electron microscopy, atomic force microscopy, and electron spectroscopy for chemical analysis clearly demonstrated the formation of the nanotopographic (<100 nm) and microtopographic (0.1–0.5 μm) titano-organic structures on the surface of the nanograined Ti implants. Subsequent coincubation of the MC3T3-E1 mouse osteoblasts on the microtopographic/nanotopographic surface of the implants resulted in enhanced osteogenic cell differentiation (the production of alkaline phosphatase, osteopontin, and osteocalcin). In vivo assessment of the osseointegrative properties of the microtopographically/nanotopographically coated implants in a model of below-knee amputation in New Zealand rabbits demonstrated enhanced new bone formation in the zone of the bone–implant contact (as measured by X-ray study) and increased osseointegration strength (removal torque measurements). Conclusion The fabrication of the hierarchical microtopographic/nanotopographic coatings on the nanograined Ti implants significantly improves the osseointegrative properties of the intraosseous Ti implants. This effect could be employed in both translational and clinical studies in orthopedic and reconstructive surgery.
Collapse
Affiliation(s)
| | - Natalia M Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | | | | | | | - Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia.,Polenov Russian Scientific Research Institute of Neurosurgery, Almazov National Medical Research Centre, St Petersburg, Russia.,Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Ekambaram BK, Niepel MS, Fuhrmann B, Schmidt G, Groth T. Introduction of Laser Interference Lithography to Make Nanopatterned Surfaces for Fundamental Studies on Stem Cell Response. ACS Biomater Sci Eng 2018; 4:1820-1832. [DOI: 10.1021/acsbiomaterials.8b00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Buch-Månson N, Spangenberg A, Gomez LPC, Malval JP, Soppera O, Martinez KL. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior. Sci Rep 2017; 7:9247. [PMID: 28835653 PMCID: PMC5569057 DOI: 10.1038/s41598-017-09208-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.
Collapse
Affiliation(s)
- Nina Buch-Månson
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France.
| | - Laura Piedad Chia Gomez
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Olivier Soppera
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, France
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
16
|
Seo HR, Joo HJ, Kim DH, Cui LH, Choi SC, Kim JH, Cho SW, Lee KB, Lim DS. Nanopillar Surface Topology Promotes Cardiomyocyte Differentiation through Cofilin-Mediated Cytoskeleton Rearrangement. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16803-16812. [PMID: 28497946 DOI: 10.1021/acsami.7b01555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscaled surface patterning is an emerging potential method of directing the fate of stem cells. We adopted nanoscaled pillar gradient patterned cell culture plates with three diameter gradients [280-360 (GP 280/360), 200-280 (GP 200/280), and 120-200 nm (GP 120/200)] and investigated their cell fate-modifying effect on multipotent fetal liver kinase 1-positive mesodermal precursor cells (Flk1+ MPCs) derived from embryonic stem cells. We observed increased cell proliferation and colony formation of the Flk1+ MPCs on the nanopattern plates. Interestingly, the 200-280 nm-sized (GP 200/280) pillar surface dramatically increased cardiomyocyte differentiation and expression of the early cardiac marker gene Mesp1. The gradient nanopattern surface-induced cardiomyocytes had cardiac sarcomeres with mature cardiac gene expression. We observed Vinculin and p-Cofilin-mediated cytoskeleton reorganization during this process. In summary, the gradient nanopattern surface with 200-280 nm-sized pillars enhanced cardiomyocyte differentiation in Flk1+ MPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital , 9 Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | | | | |
Collapse
|
17
|
Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS One 2017; 12:e0170312. [PMID: 28095466 PMCID: PMC5240960 DOI: 10.1371/journal.pone.0170312] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process.
Collapse
|
18
|
Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells - A systematic review. Acta Biomater 2016; 46:3-14. [PMID: 27667018 DOI: 10.1016/j.actbio.2016.09.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023]
Abstract
It is well known that biomaterials topography can influence the behavior of stem cells. Nevertheless, the fundamentals and the impact of nanoscale topography are just emerging. The main objective of this review has been to reveal the state-of-the-art on the effects of controlled nanoscale topographies (nanopatterns) on in vitro osteogenic differentiation of mesenchymal stem cells (MSCs) in the absence of osteogenic supplements. The findings indicate that nanopatterns with specific feature sizes, spatial arrangements, or shapes may induce osteogenic differentiation of MSCs. Regardless of substrate chemistry, nanopattern-induced osteogenic differentiation is associated with large focal adhesions, enhanced cell areas, and well organized cytoskeleton. These results suggest that earlier interactions between nanopattern features and cell receptors are involved, with effects on the entire cell structure and subsequent differentiation. Such events are possibly mediated by nanotopography-induced mechanotransduction pathways. The findings so far reveal that nanoscale topography has potential for directing differentiation of MSCs towards the osteogenic lineage in non-osteogenic media and should be harnessed for possible synergistic effects in bone regenerative therapies. STATEMENT OF SIGNIFICANCE The use of nanotopography to induce cellular responses represents a novel and rapidly growing area of research. Nevertheless, the findings and trends so far are difficult to identify and discuss mostly due to a non-systematic research approach. The present manuscript is providing a systematic review focused on nanopattern-induced osteogenic differentiation of mesenchymal stem cells. The coverage of the most relevant aspects including nanopatterns fabrication methods, their effects on osteogenic differentiation of mesenchymal stem cells as well as the related effects on adhesion and cell morphology has enabled an integrated discussion including the potential mechanotransduction mechanisms involved. Furthermore, a clear distinction between the studies that use only surface nanotopographies and the ones that mix nanotopographical features with osteogenic supplements has been made. This delineation is essential for revealing and understanding the role of biomaterial's nanotopography per se on stem cells differentiation based on which novel osteoinductive biomaterials can be developed.
Collapse
|