1
|
Kühn T, Kalotai N, Amini AM, Haardt J, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Lorkowski S, Louis S, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Watzl B, Zittermann A, Nimptsch K. Protein intake and cancer: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2024; 63:1471-1486. [PMID: 38643440 PMCID: PMC11329548 DOI: 10.1007/s00394-024-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE It has been proposed that a higher habitual protein intake may increase cancer risk, possibly via upregulated insulin-like growth factor signalling. Since a systematic evaluation of human studies on protein intake and cancer risk based on a standardised assessment of systematic reviews (SRs) is lacking, we carried out an umbrella review of SRs on protein intake in relation to risks of different types of cancer. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and cancer risk published before January 22th 2024, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Ten SRs were identified, of which eight included meta-analyses. Higher total protein intake was not associated with risks of breast, prostate, colorectal, ovarian, or pancreatic cancer incidence. The methodological quality of the included SRs ranged from critically low (kidney cancer), low (pancreatic, ovarian and prostate cancer) and moderate (breast and prostate cancer) to high (colorectal cancer). The outcome-specific certainty of the evidence underlying the reported findings on protein intake and cancer risk ranged from very low (pancreatic, ovarian and prostate cancer) to low (colorectal, ovarian, prostate, and breast cancer). Animal and plant protein intakes were not associated with cancer risks either at a low (breast and prostate cancer) or very low (pancreatic and prostate cancer) outcome-specific certainty of the evidence. Overall, the evidence for the lack of an association between protein intake and (i) colorectal cancer risk and (ii) breast cancer risk was rated as possible. By contrast, the evidence underlying the other reported results was rated as insufficient. CONCLUSION The present findings suggest that higher total protein intake may not be associated with the risk of colorectal and breast cancer, while conclusions on protein intake in relation to risks of other types of cancer are restricted due to insufficient evidence.
Collapse
Affiliation(s)
- Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
- Center for Public Health, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
2
|
Schmidt JA, Huybrechts I, Overvad K, Eriksen AK, Tjønneland A, Kaaks R, Katzke V, Schulze MB, Pala V, Sacerdote C, Tumino R, Bueno‐de‐Mesquita B, Sánchez M, Huerta JM, Barricarte A, Amiano P, Agudo A, Bjartell A, Stocks T, Thysell E, Wennberg M, Weiderpass E, Travis RC, Key TJ, Perez‐Cornago A. Protein and amino acid intakes in relation to prostate cancer risk and mortality-A prospective study in the European Prospective Investigation into Cancer and Nutrition. Cancer Med 2023; 12:4725-4738. [PMID: 36148781 PMCID: PMC9972153 DOI: 10.1002/cam4.5289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The association between protein intake and prostate cancer risk remains unclear. AIMS To prospectively investigate the associations of dietary intakes of total protein, protein from different dietary sources, and amino acids with prostate cancer risk and mortality. METHODS In 131,425 men from the European Prospective Investigation into Cancer and Nutrition, protein and amino acid intakes were estimated using validated dietary questionnaires. Multivariable-adjusted Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS During a mean follow-up of 14.2 years, 6939 men were diagnosed with prostate cancer and 914 died of the disease. Dairy protein was positively associated with overall prostate cancer risk in the three highest fifths compared to the lowest (HRQ3 =1.14 (95% CI 1.05-1.23); HRQ 4=1.09 (1.01-1.18); HRQ5 =1.10 (1.02-1.19)); similar results were observed for yogurt protein (HRQ3 =1.14 (1.05-1.24); HRQ4 =1.09 (1.01-1.18); HRQ5 =1.12 (1.04-1.21)). For egg protein intake and prostate cancer mortality, no association was observed by fifths, but there was suggestive evidence of a positive association in the analysis per standard deviation increment. There was no strong evidence of associations with different tumour subtypes. DISCUSSION Considering the weak associations and many tests, the results must be interpreted with caution. CONCLUSION This study does not provide strong evidence for an association of intakes of total protein, protein from different dietary sources or amino acids with prostate cancer risk or mortality. However, our results may suggest some weak positive associations, which need to be confirmed in large-scale, pooled analyses of prospective data.
Collapse
Affiliation(s)
- Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Department of Clinical Epidemiology, Department of Clinical MedicineAarhus University Hospital and Aarhus UniversityAarhus NDenmark
| | | | - Kim Overvad
- Department of Public HealthAarhus UniversityAarhusDenmark
| | | | - Anne Tjønneland
- Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Verena Katzke
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
| | - Matthias B. Schulze
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- Institute of Nutritional Science, University of PotsdamPotsdamGermany
| | - Valeria Pala
- Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Carlotta Sacerdote
- Unit of Cancer EpidemiologyCittà della Salute e della Scienza University‐HospitalTurinItaly
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUSRagusaItaly
| | - Bas Bueno‐de‐Mesquita
- Former senior scientist, Centre for Nutrition, Prevention and Health ServicesNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Maria‐Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP)GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of Preventive Medicine and Public HealthUniversity of GranadaGranadaSpain
| | - José M. Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Department of EpidemiologyMurcia Regional Health Council, IMIB‐ArrixacaMurciaSpain
| | | | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)MadridSpain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of GipuzkoaSan SebastianSpain
- Biodonostia Health Research InstituteEpidemiology of Chronic and Communicable Diseases GroupSan SebastiánSpain
| | - Antonio Agudo
- Unit of Nutrition and CancerCatalan Institute of Oncology ‐ ICOL'Hospitalet de LlobregatSpain
- Nutrition and Cancer GroupEpidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute—IDIBELLL'Hospitalet de LlobregatSpain
| | - Anders Bjartell
- Department of Translational Medicine, Medical FacultyLund UniversityMalmöSweden
| | - Tanja Stocks
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Elin Thysell
- Department of Medical BiosciencesPathology, Umeå UniversityUmeåSweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable HealthUmeå UniversityUmeåSweden
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Stankovic S, R. Day F, Zhao Y, Langenberg C, J. Wareham N, R. B. Perry J, K. Ong K. Elucidating the genetic architecture underlying IGF1 levels and its impact on genomic instability and cancer risk. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16417.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Insulin-like growth factor-1 (IGF1) has been implicated in mitogenic and anti-apoptotic mechanisms that promote susceptibility to cancer development and growth. Previous epidemiological studies have described phenotypic associations between higher circulating levels of IGF1 in adults with higher risks for breast, prostate, ovarian, colorectal, melanoma and lung cancers. However, such evidence is prone to confounding and reverse causality. Furthermore, it is unclear whether IGF1 promotes only the survival and proliferation of cancerous cells, or also the malignant transformation of healthy cells. Methods: We perform a genome-wide association study in 428,525 white European ancestry individuals in the UK Biobank study (UKBB) and identify 831 independent genetic determinants of circulating IGF1 levels, double the number previously reported. Results: Collectively these signals explain ~7.5% of the variance in circulating IGF1 levels in EPIC-Norfolk, with individuals in the highest 10% of genetic risk exhibiting ~1 SD higher levels than those in the lowest 10%. Using a Mendelian randomization approach, we demonstrate that genetically higher circulating IGF1 levels are associated with greater likelihood of mosaic loss of chromosome Y in leukocytes in men in UKBB (OR per +1 SD = 1.038 (95% CI: 1.010-1.067), P=0.008) and 23andMe, Inc. (P=6.8×10-05), a biomarker of genomic instability involved in early tumorigenesis. Genetically higher IGF1 is also associated with higher risks for colorectal (OR = 1.126 (1.048-1.210), P=1.3×10-03) and breast cancer (OR= 1.075 (1.048-1.103), P=3.9×10-08), with similar effects on estrogen positive (ER+) (OR = 1.069 (1.037-1.102), P=2.3×10-05) and estrogen negative (ER-) (OR = 1.074 (1.025-1.125), P=3.9×10-08) subtypes. Conclusions: These findings give an insight into the genetic regulation of circulating IGF1 levels and support a causal role for IGF1 in early tumorigenesis and risks for breast and colorectal cancers.
Collapse
|
4
|
Murphy N, Carreras-Torres R, Song M, Chan AT, Martin RM, Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Bradbury KE, Besevic J, Rinaldi S, Riboli E, Cross AJ, Travis RC, Agnoli C, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buchanan DD, Onland-Moret NC, Burnett-Hartman A, Campbell PT, Casey G, Castellví-Bel S, Chang-Claude J, Chirlaque MD, de la Chapelle A, English D, Figueiredo JC, Gallinger SJ, Giles GG, Gruber SB, Gsur A, Hampe J, Hampel H, Harrison TA, Hoffmeister M, Hsu L, Huang WY, Huyghe JR, Jenkins MA, Keku TO, Kühn T, Kweon SS, Le Marchand L, Li CI, Li L, Lindblom A, Martín V, Milne RL, Moreno V, Newcomb PA, Offit K, Ogino S, Ose J, Perduca V, Phipps AI, Platz EA, Potter JD, Qu C, Rennert G, Sakoda LC, Schafmayer C, Schoen RE, Slattery ML, Tangen CM, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang H, White E, Wolk A, Woods MO, Wu AH, Zheng W, Peters U, Gunter MJ. Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology 2020; 158:1300-1312.e20. [PMID: 31884074 PMCID: PMC7152801 DOI: 10.1053/j.gastro.2019.12.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Human studies examining associations between circulating levels of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) and colorectal cancer risk have reported inconsistent results. We conducted complementary serologic and Mendelian randomization (MR) analyses to determine whether alterations in circulating levels of IGF1 or IGFBP3 are associated with colorectal cancer development. METHODS Serum levels of IGF1 were measured in blood samples collected from 397,380 participants from the UK Biobank, from 2006 through 2010. Incident cancer cases and cancer cases recorded first in death certificates were identified through linkage to national cancer and death registries. Complete follow-up was available through March 31, 2016. For the MR analyses, we identified genetic variants associated with circulating levels of IGF1 and IGFBP3. The association of these genetic variants with colorectal cancer was examined with 2-sample MR methods using genome-wide association study consortia data (52,865 cases with colorectal cancer and 46,287 individuals without [controls]) RESULTS: After a median follow-up period of 7.1 years, 2665 cases of colorectal cancer were recorded. In a multivariable-adjusted model, circulating level of IGF1 associated with colorectal cancer risk (hazard ratio per 1 standard deviation increment of IGF1, 1.11; 95% confidence interval [CI] 1.05-1.17). Similar associations were found by sex, follow-up time, and tumor subsite. In the MR analyses, a 1 standard deviation increment in IGF1 level, predicted based on genetic factors, was associated with a higher risk of colorectal cancer risk (odds ratio 1.08; 95% CI 1.03-1.12; P = 3.3 × 10-4). Level of IGFBP3, predicted based on genetic factors, was associated with colorectal cancer risk (odds ratio per 1 standard deviation increment, 1.12; 95% CI 1.06-1.18; P = 4.2 × 10-5). Colorectal cancer risk was associated with only 1 variant in the IGFBP3 gene region (rs11977526), which also associated with anthropometric traits and circulating level of IGF2. CONCLUSIONS In an analysis of blood samples from almost 400,000 participants in the UK Biobank, we found an association between circulating level of IGF1 and colorectal cancer. Using genetic data from 52,865 cases with colorectal cancer and 46,287 controls, a higher level of IGF1, determined by genetic factors, was associated with colorectal cancer. Further studies are needed to determine how this signaling pathway might contribute to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France.
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Bristol Medical School, Department of Population Health Sciences, University of Bristol, Bristol, UK; National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Barbara Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kathryn E Bradbury
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Jelena Besevic
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010, Australia; Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dallas English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles California
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Vicente Martín
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer Ose
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Vittorio Perduca
- CESP (Inserm U1018), Fac. de médecine - Université Paris-Saclay, Fac. de médecine - UVSQ, 94805, Villejuif, France; Gustave Roussy, F-94805, Villejuif, France; Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, France
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hansong Wang
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H Wu
- University of Southern California, Preventive Medicine, Los Angeles, California
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
5
|
Hada M, Oh H, Pfeiffer RM, Falk RT, Fan S, Mullooly M, Pollak M, Geller B, Vacek PM, Weaver D, Shepherd J, Wang J, Fan B, Mahmoudzadeh AP, Malkov S, Herschorn S, Brinton LA, Sherman ME, Gierach GL. Relationship of circulating insulin-like growth factor-I and binding proteins 1-7 with mammographic density among women undergoing image-guided diagnostic breast biopsy. Breast Cancer Res 2019; 21:81. [PMID: 31337427 PMCID: PMC6651938 DOI: 10.1186/s13058-019-1162-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic density (MD) is a strong breast cancer risk factor that reflects fibroglandular and adipose tissue composition, but its biologic underpinnings are poorly understood. Insulin-like growth factor binding proteins (IGFBPs) are markers that may be associated with MD given their hypothesized role in breast carcinogenesis. IGFBPs sequester IGF-I, limiting its bioavailability. Prior studies have found positive associations between circulating IGF-I and the IGF-I:IGFBP-3 ratio and breast cancer risk. We evaluated the associations of IGF-I, IGFBP-3, and six other IGFBPs with MD. Methods Serum IGF measures were quantified in 296 women, ages 40–65, undergoing diagnostic image-guided breast biopsy. Volumetric density measures (MD-V) were assessed in pre-biopsy digital mammograms using single X-ray absorptiometry. Area density measures (MD-A) were estimated by computer-assisted thresholding software. Age, body mass index (BMI), and BMI2-adjusted linear regression models were used to examine associations of serum IGF measures with MD. Effect modification by BMI was also assessed. Results IGF-I and IGFBP-3 were not strongly associated with MD after BMI adjustment. In multivariable analyses among premenopausal women, IGFBP-2 was positively associated with both percent MD-V (β = 1.49, p value = 0.02) and MD-A (β = 1.55, p value = 0.05). Among postmenopausal women, positive relationships between IGFBP-2 and percent MD-V (β = 2.04, p = 0.003) were observed; the positive associations between IGFBP-2 and percent MD-V were stronger among lean women (BMI < 25 kg/m2) (β = 5.32, p = 0.0002; p interaction = 0.0003). Conclusions In this comprehensive study of IGFBPs and MD, we observed a novel positive association between IGFBP-2 and MD, particularly among women with lower BMI. In concert with in vitro studies suggesting a dual role of IGFBP-2 on breast tissue, promoting cell proliferation as well as inhibiting tumorigenesis, our findings suggest that further studies assessing the role of IGFBP-2 in breast tissue composition, in addition to IGF-1 and IGFBP-3, are warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manila Hada
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hannah Oh
- Division of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Ruth M Pfeiffer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roni T Falk
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaoqi Fan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Berta Geller
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Pamela M Vacek
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Donald Weaver
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | | | - Jeff Wang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Bo Fan
- University of California San Francisco, San Francisco, CA, USA
| | | | - Serghei Malkov
- University of California San Francisco, San Francisco, CA, USA
| | - Sally Herschorn
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Louise A Brinton
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gretchen L Gierach
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Shenkman BS, Zinovyeva OE, Belova SP, Mirzoev TM, Vilchinskaya NA, Vikhlyantsev IM, Ulanova AD, Turtikova OV, Samkhaeva ND, Parfenov VA, Barinov AN, Nemirovskaya TL. Cellular and molecular signatures of alcohol-induced myopathy in women. Am J Physiol Endocrinol Metab 2019; 316:E967-E976. [PMID: 30912963 DOI: 10.1152/ajpendo.00513.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic myopathy is characterized by the reduction in cross-sectional area (CSA) of muscle fibers and impaired anabolic signaling. The goal of the current study was to investigate the causes and compare the changes in CSA and fiber type composition with the modifications of anabolic and catabolic signaling pathways at the early stages of chronic alcohol consumption in women. Skeletal muscle samples from 5 female patients with alcohol abuse (AL; 43 ± 5 yr old; alcohol abuse duration 5,6 ± 0,6 yr) were compared with the muscle from the control group of 8 healthy women (C; 35 ± 4 yr old). The average daily dose of alcohol consumption was 110 ± 10 ml of pure ethanol. In women patients, a significant decrease in CSA of type I and II muscle fibers, titin and nebulin content, plasma IGF-1 level and total IRS-1, p-Akt and p-4E-BP1 in vastus lateralis was found in comparison with the control group. The p-AMPK level was found to be increased versus the control group. In women patients with chronic alcoholic myopathy 1) both fast and slow muscle fibers are subjected to atrophy; 2) impairments in IGF-I-dependent signaling and pathways controlling translation initiation (AMPK/mTOR/4E-BP1), but not translation elongation, are observed; 3) the level of calpain-1 and ubiquitinated proteins increases, unlike E3 ligases content.
Collapse
Affiliation(s)
| | - Olga E Zinovyeva
- Sechenov First Moscow State Medical University, Russian Ministry of Health , Moscow , Russia
| | | | | | | | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics , Pushchino , Russia
- Pushchino State Institute of Natural Science , Pushchino , Russia
| | - Anna D Ulanova
- Institute of Theoretical and Experimental Biophysics , Pushchino , Russia
- Pushchino State Institute of Natural Science , Pushchino , Russia
| | | | - Nudlya D Samkhaeva
- Sechenov First Moscow State Medical University, Russian Ministry of Health , Moscow , Russia
| | - Vladimir A Parfenov
- Sechenov First Moscow State Medical University, Russian Ministry of Health , Moscow , Russia
| | - Alexey N Barinov
- Sechenov First Moscow State Medical University, Russian Ministry of Health , Moscow , Russia
- Interventional Medicine Aсademy, Moscow , Russia
| | | |
Collapse
|
7
|
Oh H, Pfeiffer RM, Falk RT, Horne HN, Xiang J, Pollak M, Brinton LA, Storniolo AMV, Sherman ME, Gierach GL, Figueroa JD. Serum insulin-like growth factor (IGF)-I and IGF binding protein-3 in relation to terminal duct lobular unit involution of the normal breast in Caucasian and African American women: The Susan G. Komen Tissue Bank. Int J Cancer 2018; 143:496-507. [PMID: 29473153 DOI: 10.1002/ijc.31333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
Lesser degrees of terminal duct lobular unit (TDLU) involution, as reflected by higher numbers of TDLUs and acini/TDLU, are associated with elevated breast cancer risk. In rodent models, the insulin-like growth factor (IGF) system regulates involution of the mammary gland. We examined associations of circulating IGF measures with TDLU involution in normal breast tissues among women without precancerous lesions. Among 715 Caucasian and 283 African American (AA) women who donated normal breast tissue samples to the Komen Tissue Bank between 2009 and 2012 (75% premenopausal), serum concentrations of IGF-I and binding protein (IGFBP)-3 were quantified using enzyme-linked immunosorbent assay. Hematoxilyn and eosin-stained tissue sections were assessed for numbers of TDLUs ("TDLU count"). Zero-inflated Poisson regression models with a robust variance estimator were used to estimate relative risks (RRs) for association of IGF measures (tertiles) with TDLU count by race and menopausal status, adjusting for potential confounders. AA (vs. Caucasian) women had higher age-adjusted mean levels of serum IGF-I (137 vs. 131 ng/mL, p = 0.07) and lower levels of IGFBP-3 (4165 vs. 4684 ng/mL, p < 0.0001). Postmenopausal IGFBP-3 was inversely associated with TDLU count among AA (RRT3vs.T1 = 0.49, 95% CI = 0.28-0.84, p-trend = 0.04) and Caucasian (RRT3vs.T1 =0.64, 95% CI = 0.42-0.98, p-trend = 0.04) women. In premenopausal women, higher IGF-I:IGFBP-3 ratios were associated with higher TDLU count in Caucasian (RRT3vs.T1 =1.33, 95% CI = 1.02-1.75, p-trend = 0.04), but not in AA (RRT3vs.T1 =0.65, 95% CI = 0.42-1.00, p-trend = 0.05), women. Our data suggest a role of the IGF system, particularly IGFBP-3, in TDLU involution of the normal breast, a breast cancer risk factor, among Caucasian and AA women.
Collapse
Affiliation(s)
- Hannah Oh
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Section of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ.,Division of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Hisani N Horne
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,U.S. Food and Drug Administration, Silver Spring, MD
| | - Jackie Xiang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Anna Maria V Storniolo
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN
| | - Mark E Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Mayo Clinic, Jacksonville, FL
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Usher Institute of Population Health Sciences and Informatics, Institute of Genomics and Molecular Medicine, Edinburgh Cancer Research Centre, University of Edinburgh, UK
| |
Collapse
|
8
|
Matsumoto R, Koga M, Kasayama S, Fukuoka H, Iguchi G, Odake Y, Yoshida K, Bando H, Suda K, Nishizawa H, Takahashi M, Ogawa W, Takahashi Y. Factors correlated with serum insulin-like growth factor-I levels in health check-up subjects. Growth Horm IGF Res 2018; 40:55-60. [PMID: 29395967 DOI: 10.1016/j.ghir.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most of circulating IGF-I is derived from the liver and circulating IGF-I levels are decreased in several pathological conditions, such as liver cirrhosis, uncontrolled diabetes, renal failure, and malnutrition. However, it has not fully been elucidated which factors modify IGF-I level in a physiological condition. OBJECTIVE To identify the factors which are associated with circulating IGF-I levels. DESIGN Cross-sectional study. METHODS This study included 428 subjects who undertook health check-up. Subjects diagnosed with non-alcoholic fatty liver disease (NAFLD) by ultrasonography were analyzed separately. Univariate and multivariate regression analyses were conducted to identify the factors associated with circulating IGF-I levels. RESULTS Regression analyses revealed that serum albumin levels, total-bilirubin levels, calcium levels, and HOMA-IR were positively correlated with IGF-I levels. Serum transaminase levels and habitual drinking (ethanol intake >20 g/day) were negatively correlated with serum IGF-I levels. Although serum IGF-I standard deviation scores (SDS) in subjects with and without NAFLD were comparable, after adjusting confounding factors clarified by multivariate regression analysis, IGF-I SDS negatively correlated with the presence of NAFLD. CONCLUSION In this study, we demonstrated that serum bilirubin and calcium levels are correlated with serum IGF-I levels. Although further study is necessary, these data suggest a presence of interaction between GH-IGF-I axis and bilirubin and calcium metabolism.
Collapse
Affiliation(s)
- Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masafumi Koga
- Department of Internal Medicine, Hakuhokai Central Hospital, Hyogo, Japan
| | - Soji Kasayama
- Department of Medicine, Nissay Hospital, Osaka, Japan
| | - Hidenori Fukuoka
- Department of Diabetes and Endocrinology, Kobe University Hospital, Hyogo, Japan
| | - Genzo Iguchi
- Department of Diabetes and Endocrinology, Kobe University Hospital, Hyogo, Japan
| | - Yukiko Odake
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kenichi Yoshida
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kentaro Suda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hitoshi Nishizawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Michiko Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
9
|
Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS One 2017; 12:e0185561. [PMID: 28976993 PMCID: PMC5627923 DOI: 10.1371/journal.pone.0185561] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/14/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose To determine serum insulin-like growth factor 1 (IGF-I) levels in healthy Chinese adults, establish reference ranges for serum IGF-I levels and observe the effects of age, sex, body mass index (BMI) and geographical region on serum IGF-I levels. Methods In total, 2791 healthy adults (1339 males and 1452 females) from the north (Beijing) and south (Guizhou Province) of China were recruited following a questionnaire survey, physical examination and laboratory examination. Both sexes were divided into 13 groups according to age (18, 19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69 and ≥70 years). The serum IGF-I levels were measured by performing a chemiluminescent assay (Immulite 2000®), and the LMS (Lambda-Mu-Sigma) method was applied to construct smooth centile curves of age-specific IGF-I levels. Results Serum IGF-I levels in the adults gradually decreased with increasing age from 18 to 70 years in both the male and female participants. Although the decrease in the level of IGF-1 was more pronounced in females than in males, no significant difference was observed between the sexes, except in the 60- to 64-year-old age group (P = 0.0329). The multiple linear regression model showed that there was an inverse relationship between the serum IGF-I level and BMI (P<0.001), and the serum IGF-I level in the Guizhou population was higher than that in the Beijing population (P<0.05). Conclusion The normal reference ranges for age- and sex-specific serum IGF-I levels were established for the first time in a large sample of Chinese adults. The serum IGF-I levels were significantly influenced by age, BMI and geographical region.
Collapse
|
10
|
Coughlin SS, Smith SA. The Insulin-like Growth Factor Axis, Adipokines, Physical Activity, and Obesity in Relation to Breast Cancer Incidence and Recurrence. ACTA ACUST UNITED AC 2015; 4:24-31. [PMID: 26251693 PMCID: PMC4524449 DOI: 10.5539/cco.v4n2p24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Obesity, a risk factor for the development of postmenopausal breast cancer and certain other cancer types, has also been associated with poorer response to cancer therapy and cancer recurrence. The insulin-like growth factor (IGF) axis also influences cancer risk. Methods In this commentary, we consider the literature on IGF and its binding proteins and the risk of breast cancer, along with effects of obesity, adipokines, and insulin resistance on breast cancer, and the potential for lifestyle interventions to address weight gain and physical inactivity among at-risk women. Results Greater body fatness is associated with a higher risk of postmenopausal breast cancer. The association may be explained, in part, by hyperinsulinemia and alterations in adipokines and estrogens. Nutrition, energy balance, and levels of physical activity are determinants of IGF bioactivity. Alterations in the IGF axis can increase cancer risk and progression. Results from epidemiologic studies indicate that higher circulating levels of IGF-I are associated with an increased risk of breast cancer. Conclusions Intervention studies are needed to determine how to sustain the positive effects of exercise over time and to identify the optimal mode, intensity, frequency, duration, and timing of exercise for breast cancer survivors, including important subgroups of survivors such as African American and Hispanic women. Future epidemiologic studies of the relationships between the IGF axis and breast cancer should include adequate numbers of African American women, Hispanic women, and other minority women who have been underrepresented in studies completed to date.
Collapse
Affiliation(s)
- Steven S Coughlin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Selina A Smith
- Institute of Public and Preventive Health, and Department of Family Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|