1
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
De Santi M, Annibalini G, Marano G, Biganzoli G, Venturelli E, Pellegrini M, Lucertini F, Brandi G, Biganzoli E, Barbieri E, Villarini A. Association between metabolic syndrome, insulin resistance, and IGF-1 in breast cancer survivors of DIANA-5 study. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04755-6. [PMID: 37106164 PMCID: PMC10374719 DOI: 10.1007/s00432-023-04755-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Circulating insulin-like growth factor-1 (IGF-1) is positively associated with the risk of BC recurrence, and is more frequently dysregulated in older people, especially in those with metabolic syndrome (MetS) and obesity. This study aimed to analyze the association between IGF-1 levels and indices of MetS and insulin resistance in BC survivors. METHODS Baseline data of 563 BC survivors enrolled in the DIet and ANdrogen-5 (DIANA-5; NCT05019989) study were analyzed. RESULTS Lower circulating IGF-1 levels in subjects with MetS than in those without MetS were found. After stratification of the patients according to the diagnosis of MetS, we highlighted that the insulin was the main predictor of elevated IGF-1 levels only in subjects without MetS. Moreover, we found an interaction between high-density lipoprotein cholesterol (HDL-C), glycemia, and IGF-1 levels, showing a positive correlation between HDL-C and IGF-1, especially in subjects with higher values of glycemia and without a diagnosis of MetS. CONCLUSIONS While IGF-1 levels appear to be much more impaired in subjects diagnosed with MetS, in non-MetS subjects, IGF-1 levels may respond better to metabolic parameters and lifestyle changes. Further studies are needed to analyze the role of physical activity and/or dietary intervention in modulating IGF-1 concentrations in BC survivors. IMPLICATIONS FOR CANCER SURVIVORS These results could have important clinical implications for planning customized strategies aimed at modulating IGF-1 levels in BC survivors. In fact, while the IGF-1 system seems to be much more compromised in subjects with a diagnosis of MetS, in noMetS subjects, IGF-1 levels could better respond to lifestyle changes.
Collapse
Affiliation(s)
- Mauro De Santi
- Unit of Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences - Division of Exercise and Health Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe Marano
- Department of Clinical Sciences and Community Health and DSRC, University of Milan, Milan, Italy
| | - Giacomo Biganzoli
- Department of Clinical Sciences and Community Health and DSRC, University of Milan, Milan, Italy
| | - Elisabetta Venturelli
- Epidemiology and Prevention Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Pellegrini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Lucertini
- Department of Biomolecular Sciences - Division of Exercise and Health Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giorgio Brandi
- Unit of Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elia Biganzoli
- Department of Clinical Sciences and Community Health and DSRC, University of Milan, Milan, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences - Division of Exercise and Health Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Anna Villarini
- Hygiene and Public Health, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Mohamed OA, Samir S, Omar H, Hassan EA, Abdelazeem E. Lab-scale Preparation of Recombinant Human Insulin-like Growth Factor-1 in Escherichia coli and its Potential Safety on Normal Human Lung Cell Line. Recent Pat Biotechnol 2022; 16:266-280. [PMID: 35418294 DOI: 10.2174/1872208316666220412105822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) is structurally similar to insulin and acts as an endocrine hormone secreted by the liver. OBJECTIVE Production of recombinant human IGF-1 (rhIGF-1) in Escherichia coli (E.coli) and evaluation of its proliferation stimulatory activity. METHODS hIGF-1 gene cloned into pBSK (+) simple vector was transformed into TOP 10 chemically competent cells of E. coli. Polymerase chain reaction (PCR) was achieved using specific hIGF-1 gene primers to confirm the successful transformation. To express the rhIGF-1 in E. coli (Rosetta (DE3) pLysS); the hIGF-1 gene was cloned into the pET-15b expression vector and then the recombinant pET-15b/IGF-1 vector was transformed into a chemically prepared competent expression bacterial cells; Rosetta (DE3) pLysS. The rhIGF-1 was expressed as insoluble aggregates called inclusion bodies (IBs) using a 2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer. IBs were solubilized in a denatured form using 6 M guanidinium hydrochloride (GdmCl), followed by in vitro protein refolding using the rapid dilution method. The refolded hIGF-1 was purified using the HiTrap- ANX anion exchange column. Western blot and ELISA using rabbit polyvalent anti-hIGF- 1 were performed to confirm the protein antigenic identity. Cell proliferation activity of rhIGF-1 was testified on normal human lung cell line (WI-38). RESULTS rhIGF-1 was purified from the HiTrap-ANX column at a concentration of 300 μg/ml. Western blot showed a single 7.6 kDa band obtained in the induced Rosetta (DE3) pLYsS. ELISA confirmed the molecular identity of the rhIGF-1 epitope, the concentration of purified rhIGF-1 obtained from the ELISA standard curve using rhIGF-1 reference protein as a standard was 300 μg/ml, and activity on WI-38 cells was 2604.17I U/mg. CONCLUSION Biologically active native rhIGF-1 protein was successfully expressed. Patents related to the preparation of IGF-1 were mentioned along the text.
Collapse
Affiliation(s)
- Omnia A Mohamed
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Hanan Omar
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Ekrami A Hassan
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Eman Abdelazeem
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Wawrzyniak N, Suliburska J. Nutritional and health factors affecting the bioavailability of calcium: a narrative review. Nutr Rev 2021; 79:1307-1320. [PMID: 33491051 DOI: 10.1093/nutrit/nuaa138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium is responsible for the effectiveness of various processes, and its supply in the diet is necessary for the normal function of the human body. Apart from being an important component of the skeleton, calcium also helps maintain the structure of cell organelles and regulates intracellular and extracellular fluid homeostasis. This review presents the nutritional and health factors that affect the bioavailability of calcium. Physiological conditions and factors such as pregnancy, infancy, menopause, old age, hormones, growth factors associated with calcium metabolism, diseases limiting its absorption, and intestinal microbiota are distinguished among endogenous factors. Although the calcium supply in the body is genetically conditioned and specific to each person, its qualitative and quantitative composition can be modified by external factors. The exogenous factors include dietary modifications with particular nutrients and pharmacological treatment. Adequate calcium levels increase bone protection and prevent osteoporosis, a disease involving low mineral bone mass.
Collapse
Affiliation(s)
- Natalia Wawrzyniak
- N. Wawrzyniak and J. Suliburska are with the Department of Human Nutrition and Dietetics, Faculty of Food and Nutrition Science, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- N. Wawrzyniak and J. Suliburska are with the Department of Human Nutrition and Dietetics, Faculty of Food and Nutrition Science, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Novák P, Jackson AO, Zhao GJ, Yin K. Bilirubin in metabolic syndrome and associated inflammatory diseases: New perspectives. Life Sci 2020; 257:118032. [PMID: 32621920 DOI: 10.1016/j.lfs.2020.118032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is one of the major global health issues, which is closely related to metabolic dysfunction and the chronic inflammatory diseases. Multiple studies have demonstrated that serum bilirubin is negatively correlated with metabolic syndrome and associated inflammatory diseases, including atherosclerosis, hypertension, etc. However, the roles of bilirubin in metabolic syndrome and associated inflammatory diseases still remain unclear. Here, we explain the role of bilirubin in metabolic syndrome and chronic inflammatory diseases and its therapeutic potential. Understanding the role of bilirubin activities in diabetes may serve as a therapeutic target for the treatment of chronic inflammatory diseases in diabetic patients.
Collapse
Affiliation(s)
- Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541000, Guangxi, China
| | - Ampadu O Jackson
- International College, University of South China, Hengyang, Hunan Province 421001, China
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541000, Guangxi, China; The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| |
Collapse
|
6
|
Yao Y, Miao X, Zhu D, Li D, Zhang Y, Song C, Liu K. Insulin-like growth factor-1 and non-alcoholic fatty liver disease: a systemic review and meta-analysis. Endocrine 2019; 65:227-237. [PMID: 31243652 DOI: 10.1007/s12020-019-01982-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
AIM The prevalence of non-alcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide. A number of researchers have studied the relationship between Insulin-like growth factor-1(IGF-1) and NAFLD. However, the results are controversial. This meta-analysis, aimed to systemically evaluate the correlation between IGF-1 and NAFLD. METHODS We searched for four online databases: PubMed, Web of Science, Embase and CNKI up to Feb 2018. We then applied a random-effects model to evaluate the overall effect sizes by calculating Standard mean difference (SMD) and its 95% confidence intervals (CIs). RESULTS Twelve articles were included in this meta-analysis. The pooled analysis showed that the level of IGF-1 in the control group was significantly higher than that in the NAFLD group. (SMD: 1.00, 95% CI: 0.54-1.46, P < 0.00001). However, significant heterogeneity was discovered among the included studies (P < 0.00001, I2 = 96%). Then a series of subgroup analyses were performed. Compared to the nonalcoholic steatohepatitis (NASH) group, the level of IGF-1 was significantly higher in the Non- or probable-NASH group (SMD: 1.42, 95% CI: 0.25-2.58, P = 0.02). The level of IGF-1 in patients with increased insulin resistance (SMD: 0.49; 95% CI: 0.36-0.63; P < 0.00001) and high Body Mass Index (SMD: 0.50; 95% CI: 0.22-0.79; P < 0.05) were significantly lower than healthy control. In addition, the same conclusion were found in studies carried out in Asia and Europe (Asia: SMD: 0.69, 95% CI: -0.29-1.66, P = 0.17; Europe: SMD: 0.89, 95% CI: 0.41-1.38, P < 0.05). CONCLUSION The level of IGF-1 is down-regulated in NAFLD patients compared to healthy controls, suggesting that IGF-1 might be used as a potential biomarker and therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yang Yao
- Department of Central Laboratory, the First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710077, PR China
| | - Xiangxia Miao
- Clinical Medicine (three-year program) of Postgrade 2016, Xi'an Medical University, Xi'an, Shaanxi, 710021, PR China
| | - Donglie Zhu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China
| | - Ying Zhang
- Clinical Medicine (three-year program) of Postgrade 2017, Xi'an Medical University, Xi'an, Shaanxi, 710021, PR China
| | - Chengyan Song
- Clinical Medicine (three-year program) of Postgrade 2017, Xi'an Medical University, Xi'an, Shaanxi, 710021, PR China
| | - Kaige Liu
- Department of Gastroenterology, the First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710077, PR China.
| |
Collapse
|
7
|
Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int J Mol Sci 2018; 19:ijms19051308. [PMID: 29702590 PMCID: PMC5983723 DOI: 10.3390/ijms19051308] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte differentiation, proliferation, and apoptosis are affected by growth factors produced in liver. Insulin-like growth factor 1 and 2 (IGF1 and IGF2) act in response to growth hormone (GH). Other IGF family components include at least six binding proteins (IGFBP1 to 6), manifested by both IGFs develop due to interaction through the type 1 receptor (IGF1R). The data based on animal models and/or in vitro studies suggest the role of IGF system components in cellular aspects of hepatocarcinogenesis (cell cycle progression, uncontrolled proliferation, cell survival, migration, inhibition of apoptosis, protein synthesis and cell growth), and show that systemic IGF1 administration can reduce fibrosis and ameliorate general liver function. In epidemiologic and clinicopathological studies on chronic liver disease (CLD), lowered serum levels, decreased tissue expression of IGF1, elevated production of IGF1R and variable IGF2 expression has been noted, from the start of preneoplastic alterations up to the developed hepatocellular carcinoma (HCC) stage. These changes result in well-known clinical symptoms of IGF1 deficiency. This review summarized the current data of the complex role of IGF system components in the most common CLD (nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma). Better recognition and understanding of this system can contribute to discovery of new and improved versions of current preventive and therapeutic actions in CLD.
Collapse
|