1
|
Pierfelice TV, D’Amico E, Cinquini C, Iezzi G, D’Arcangelo C, D’Ercole S, Petrini M. The Diagnostic Potential of Non-Invasive Tools for Oral Cancer and Precancer: A Systematic Review. Diagnostics (Basel) 2024; 14:2033. [PMID: 39335712 PMCID: PMC11431589 DOI: 10.3390/diagnostics14182033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES This systematic review aimed to analyse the published evidence for the use of non-invasive methods for the early detection of oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). METHODS The literature was systematically searched through several databases: PubMed, Cochrane Library, and Web of Science. Additional exploration was performed through cross-checks on the bibliographies of selected reviews. The inclusion criteria involved studies assessing the application of non-invasive tests on humans in the screening, diagnosis, or surveillance of OSCC or OPMDs and reporting sensitivity (SE) and specificity (SP). The Newcastle-Ottawa scale (NOS) was applied to assess the quality of the studies included. RESULTS The search strategy resulted in 8012 preliminary records. After a duplicate check, 116 titles remained. After abstract analysis, 70 papers remained. After full text analysis, only 54 of the 70 papers fit the inclusion criteria (28 were original articles and 26 were reviews). Those 26 reviews were used to manually search for further original articles. From this last search, 33 original articles were found. Thus, a total of 61 original studies were included and investigated. Findings from this systematic review indicate useful information, such as a description of the mechanisms, ease of use, limitations, and SE and SP values, to drive the choice of the optimal minimally invasive method to be utilized as an adjunctive tool to examine the suspicious lesions. CONCLUSIONS Each of the analysed tools can be improved or implemented, considering their high SE and low SP. Despite advancements, incisional biopsy continues to be the gold standard for the definitive diagnosis of oral cancer and precancerous lesions. Further research and development are essential to improving the sensitivity, specificity, and reliability of non-invasive tools for widespread clinical application.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Chiara Cinquini
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56100 Pisa, Italy;
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (T.V.P.); (E.D.); (G.I.); (C.D.); (S.D.)
| |
Collapse
|
2
|
Chang S, Krzyzanowska H, Bowden AK. Label-Free Optical Technologies to Enhance Noninvasive Endoscopic Imaging of Early-Stage Cancers. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:289-311. [PMID: 38424030 DOI: 10.1146/annurev-anchem-061622-014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
White light endoscopic imaging allows for the examination of internal human organs and is essential in the detection and treatment of early-stage cancers. To facilitate diagnosis of precancerous changes and early-stage cancers, label-free optical technologies that provide enhanced malignancy-specific contrast and depth information have been extensively researched. The rapid development of technology in the past two decades has enabled integration of these optical technologies into clinical endoscopy. In recent years, the significant advantages of using these adjunct optical devices have been shown, suggesting readiness for clinical translation. In this review, we provide an overview of the working principles and miniaturization considerations and summarize the clinical and preclinical demonstrations of several such techniques for early-stage cancer detection. We also offer an outlook for the integration of multiple technologies and the use of computer-aided diagnosis in clinical endoscopy.
Collapse
Affiliation(s)
- Shuang Chang
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Halina Krzyzanowska
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Audrey K Bowden
- 1Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA;
- 2Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Vadhwana B, Tarazi M, Patel V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3267. [PMID: 37892088 PMCID: PMC10606449 DOI: 10.3390/diagnostics13203267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Artificial intelligence (AI) presents a novel platform for improving disease diagnosis. However, the clinical utility of AI remains limited to discovery studies, with poor translation to clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore the role of artificial intelligence in real-time histological prediction of colorectal lesions during colonoscopy. A systematic search using MeSH headings relating to "AI", "machine learning", "computer-aided", "colonoscopy", and "colon/rectum/colorectal" identified 2290 studies. Thirteen studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy. The current literature demonstrates that despite the promise of new endoscopic AI models, they remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities and time efficiency.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Vanash Patel
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
- West Hertfordshire Hospital NHS Trust, Vicarage Road, Watford WD18 0HB, UK
| |
Collapse
|
4
|
Insights into Biochemical Sources and Diffuse Reflectance Spectral Features for Colorectal Cancer Detection and Localization. Cancers (Basel) 2022; 14:cancers14225715. [PMID: 36428806 PMCID: PMC9688116 DOI: 10.3390/cancers14225715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most deadly type of cancer worldwide. Early detection not only reduces mortality but also improves patient prognosis by allowing the use of minimally invasive techniques to remove cancer while avoiding major surgery. Expanding the use of microsurgical techniques requires accurate diagnosis and delineation of the tumor margins in order to allow complete excision of cancer. We have used diffuse reflectance spectroscopy (DRS) to identify the main optical CRC biomarkers and to optimize parameters for the integration of such technologies into medical devices. A total number of 2889 diffuse reflectance spectra were collected in ex vivo specimens from 47 patients. Short source-detector distance (SDD) and long-SDD fiber-optic probes were employed to measure tissue layers from 0.5 to 1 mm and from 0.5 to 1.9 mm deep, respectively. The most important biomolecules contributing to differentiating DRS between tissue types were oxy- and deoxy-hemoglobin (Hb and HbO2), followed by water and lipid. Accurate tissue classification and potential DRS device miniaturization using Hb, HbO2, lipid and water data were achieved particularly well within the wavelength ranges 350-590 nm and 600-1230 nm for the short-SDD probe, and 380-400 nm, 420-610 nm, and 650-950 nm for the long-SDD probe.
Collapse
|
5
|
Rodriguez-Diaz E, Jepeal LI, Baffy G, Lo WK, MashimoMD H, A'amar O, Bigio IJ, Singh SK. Artificial Intelligence-Based Assessment of Colorectal Polyp Histology by Elastic-Scattering Spectroscopy. Dig Dis Sci 2022; 67:613-621. [PMID: 33761089 DOI: 10.1007/s10620-021-06901-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Colonoscopic screening and surveillance for colorectal cancer could be made safer and more efficient if endoscopists could predict histology without the need to biopsy and perform histopathology on every polyp. Elastic-scattering spectroscopy (ESS), using fiberoptic probes integrated into standard biopsy tools, can assess, both in vivo and in real time, the scattering and absorption properties of tissue related to its underlying pathology. AIMS The objective of this study was to evaluate prospectively the potential of ESS to predict polyp pathology accurately. METHODS We obtained ESS measurements from patients undergoing screening/surveillance colonoscopy using an ESS fiberoptic probe integrated into biopsy forceps. The integrated forceps were used for tissue acquisition, following current standards of care, and optical measurement. All measurements were correlated to the index pathology. A machine learning model was then applied to measurements from 367 polyps in 169 patients to prospectively evaluate its predictive performance. RESULTS The model achieved sensitivity of 0.92, specificity of 0.87, negative predictive value (NPV) of 0.87, and high-confidence rate (HCR) of 0.84 for distinguishing 220 neoplastic polyps from 147 non-neoplastic polyps of all sizes. Among 138 neoplastic and 131 non-neoplastic polyps ≤ 5 mm, the model achieved sensitivity of 0.91, specificity of 0.88, NPV of 0.89, and HCR of 0.83. CONCLUSIONS Results show that ESS is a viable endoscopic platform for real-time polyp histology, particularly for polyps ≤ 5 mm. ESS is a simple, low-cost, clinically friendly, optical biopsy modality that, when interfaced with minimally obtrusive endoscopic tools, offers an attractive platform for in situ polyp assessment.
Collapse
Affiliation(s)
- Eladio Rodriguez-Diaz
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Lisa I Jepeal
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA
| | - György Baffy
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Wai-Kit Lo
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Hiroshi MashimoMD
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA.,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA
| | - Ousama A'amar
- Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Satish K Singh
- Research Service, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA. .,Department of Biomedical Engineering, College of Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA. .,Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, 150 South Huntington Ave., Boston, MA, 02130, USA. .,Department of Medicine, Brigham and Women's Hospital Boston and Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, USA. .,Department of Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA.
| |
Collapse
|
6
|
Rodriguez-Diaz E, Kaanan S, Vanley C, Qureshi T, Bigio IJ. Toward optical spectroscopy-guided lung biopsy: Demonstration of tissue-type classification. JOURNAL OF BIOPHOTONICS 2021; 14:e202100132. [PMID: 34245106 DOI: 10.1002/jbio.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The diagnostic yield of standard tissue-sampling modalities of suspected lung cancers, whether by bronchoscopy or interventional radiology, can be nonoptimal, varying with the size and location of lesions. What is needed is an insitu sensor, integrated in the biopsy tool, to objectively distinguish among tissue types in real time, not to replace biopsy with an optical diagnostic, but to verify that the sampling tool is properly located within the target lesion. We investigated the feasibility of elastic scattering spectroscopy (ESS), coupled with machine learning, to distinguish lung lesions from the various nearby tissue types, in a study with freshly-excised lung tissues from surgical resections. Optical spectra were recorded with an ESS fiberoptic probe in different areas of the resected pulmonary tissues, including benign-margin tissue sites as well as the periphery and core of the lesion. An artificial-intelligence model was used to analyze, retrospectively, 2032 measurements from excised tissues of 35 patients. With high accuracy, ESS was able to distinguish alveolar tissue from bronchi, alveolar tissue from lesions, and bronchi from lesions. This ex vivo study indicates promise for ESS fiberoptic probes to be integrated with surgical intervention tools, to improve reliability of pulmonary lesion targeting.
Collapse
Affiliation(s)
| | - Samer Kaanan
- Providence Mission Hospital, Mission Viejo, California, USA
| | | | | | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Nogueira MS, Maryam S, Amissah M, Lu H, Lynch N, Killeen S, O'Riordain M, Andersson-Engels S. Evaluation of wavelength ranges and tissue depth probed by diffuse reflectance spectroscopy for colorectal cancer detection. Sci Rep 2021; 11:798. [PMID: 33436684 PMCID: PMC7804163 DOI: 10.1038/s41598-020-79517-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide and the second most deadly. Recent research efforts have focused on developing non-invasive techniques for CRC detection. In this study, we evaluated the diagnostic capabilities of diffuse reflectance spectroscopy (DRS) for CRC detection by building 6 classification models based on support vector machines (SVMs). Our dataset consists of 2889 diffuse reflectance spectra collected from freshly excised ex vivo tissues of 47 patients over wavelengths ranging from 350 and 1919 nm with source-detector distances of 630-µm and 2500-µm to probe different depths. Quadratic SVMs were used and performance was evaluated using twofold cross-validation on 10 iterations of randomized training and test sets. We achieved (93.5 ± 2.4)% sensitivity, (94.0 ± 1.7)% specificity AUC by probing the superficial colorectal tissue and (96.1 ± 1.8)% sensitivity, (95.7 ± 0.6)% specificity AUC by sampling deeper tissue layers. To the best of our knowledge, this is the first DRS study to investigate the potential of probing deeper tissue layers using larger SDD probes for CRC detection in the luminal wall. The data analysis showed that using a broader spectrum and longer near-infrared wavelengths can improve the diagnostic accuracy of CRC as well as probing deeper tissue layers.
Collapse
Affiliation(s)
- Marcelo Saito Nogueira
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland.
- Department of Physics, University College Cork, College Road, Cork, Ireland.
| | - Siddra Maryam
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, Ireland
| | - Michael Amissah
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, Ireland
| | - Huihui Lu
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Noel Lynch
- Department of Surgery, Mercy University Hospital, Cork, Ireland
| | - Shane Killeen
- Department of Surgery, Mercy University Hospital, Cork, Ireland
| | | | - Stefan Andersson-Engels
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
8
|
Mashimo H, Gordon SR, Singh SK. Advanced endoscopic imaging for detecting and guiding therapy of early neoplasias of the esophagus. Ann N Y Acad Sci 2020; 1482:61-76. [PMID: 33184872 DOI: 10.1111/nyas.14523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Esophageal cancers, largely adenocarcinoma in Western countries and squamous cell cancer in Asia, present a significant burden of disease and remain one of the most lethal of cancers. Key to improving survival is the development and adoption of new imaging modalities to identify early neoplastic lesions, which may be small, multifocal, subsurface, and difficult to detect by standard endoscopy. Such advanced imaging is particularly relevant with the emergence of ablative techniques that often require multiple endoscopic sessions and may be complicated by bleeding, pain, strictures, and recurrences. Assessing the specific location, depth of involvement, and features correlated with neoplastic progression or incomplete treatment may optimize treatments. While not comprehensive of all endoscopic imaging modalities, we review here some of the recent advances in endoscopic luminal imaging, particularly with surface contrast enhancement using virtual chromoendoscopy, highly magnified subsurface imaging with confocal endomicroscopy, optical coherence tomography, elastic scattering spectroscopy, angle-resolved low-coherence interferometry, and light scattering spectroscopy. While there is no single ideal imaging modality, various multimodal instruments are also being investigated. The future of combining computer-aided assessments, molecular markers, and improved imaging technologies to help localize and ablate early neoplastic lesions shed hope for improved disease outcome.
Collapse
Affiliation(s)
- Hiroshi Mashimo
- VA Boston Healthcare System, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Stuart R Gordon
- Dartmouth-Hitchcock Medical Center, Dartmouth University, Lebanon, New Hampshire
| | - Satish K Singh
- VA Boston Healthcare System, Boston, Massachusetts.,Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
9
|
Taunk P, Atkinson CD, Lichtenstein D, Rodriguez-Diaz E, Singh SK. Computer-assisted assessment of colonic polyp histopathology using probe-based confocal laser endomicroscopy. Int J Colorectal Dis 2019; 34:2043-2051. [PMID: 31696259 DOI: 10.1007/s00384-019-03406-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Probe-based confocal laser endomicroscopy (pCLE) is a promising modality for classifying polyp histology in vivo, but decision making in real-time is hampered by high-magnification targeting and by the learning curve for image interpretation. The aim of this study is to test the feasibility of a system combining the use of a low-magnification, wider field-of-view pCLE probe and a computer-assisted diagnosis (CAD) algorithm that automatically classifies colonic polyps. METHODS This feasibility study utilized images of polyps from 26 patients who underwent colonoscopy with pCLE. The pCLE images were reviewed offline by two expert and five junior endoscopists blinded to index histopathology. A subset of images was used to train classification software based on the consensus of two GI histopathologists. Images were processed to extract image features as inputs to a linear support vector machine classifier. We compared the CAD algorithm's prediction accuracy against the classification accuracy of the endoscopists. RESULTS We utilized 96 neoplastic and 93 non-neoplastic confocal images from 27 neoplastic and 20 non-neoplastic polyps. The CAD algorithm had sensitivity of 95%, specificity of 94%, and accuracy of 94%. The expert endoscopists had sensitivities of 98% and 95%, specificities of 98% and 96%, and accuracies of 98% and 96%, while the junior endoscopists had, on average, a sensitivity of 60%, specificity of 85%, and accuracy of 73%. CONCLUSION The CAD algorithm showed comparable performance to offline review by expert endoscopists and improved performance when compared to junior endoscopists and may be useful for assisting clinical decision making in real time.
Collapse
Affiliation(s)
- Pushpak Taunk
- Division of Digestive Diseases and Nutrition, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Christopher D Atkinson
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, Boston, MA, USA
| | - David Lichtenstein
- Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | | | - Satish K Singh
- Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, Boston, MA, USA. .,Boston University School of Medicine & College of Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
LaRiviere B, Ferguson NL, Garman KS, Fisher DA, Jokerst NM. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film silicon photodetector arrays. BIOMEDICAL OPTICS EXPRESS 2019; 10:5703-5715. [PMID: 31799041 PMCID: PMC6865100 DOI: 10.1364/boe.10.005703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/03/2023]
Abstract
Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a promising technique for characterization of colon tissue. Herein, two methods for extracting the reduced scattering and absorption coefficients ( μ s ' ( λ ) and μ a ( λ ) ) from SRDRS data using lookup tables of simulated diffuse reflectance are reported. Experimental measurements of liquid tissue phantoms performed with a custom multi-pixel silicon SRDRS sensor spanning the 450 - 750 nm wavelength range were used to evaluate the extraction methods, demonstrating that the combined use of spatial and spectral data reduces extraction error compared to use of spectral data alone. Additionally, SRDRS measurements of normal and tumor ex-vivo human colon tissue are presented along with μ s ' ( λ ) and μ a ( λ ) extracted from these measurements.
Collapse
Affiliation(s)
- Ben LaRiviere
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | - Nan M. Jokerst
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Rodriguez‐Diaz E, Manolakos D, Christman H, Bonning MA, Geisse JK, A'Amar OM, Leffell DJ, Bigio IJ. Optical Spectroscopy as a Method for Skin Cancer Risk Assessment. Photochem Photobiol 2019; 95:1441-1445. [DOI: 10.1111/php.13140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Holly Christman
- Department of Dermatology University of California, San Francisco San Francisco CA
- DermaSensor, Inc. Miami FL
| | - Michael A. Bonning
- DermaSensor, Inc. Miami FL
- Department of Health Systems and Populations Macquarie University Sydney NSW Australia
| | - John K. Geisse
- Department of Dermatology University of California, San Francisco San Francisco CA
- Department of Pathology University of California, San Francisco San Francisco CA
| | - Ousama M. A'Amar
- Department of Biomedical Engineering Boston University Boston MA
| | | | - Irving J. Bigio
- Department of Biomedical Engineering Boston University Boston MA
- Departments of Electrical & Computer Engineering, Physics, Medicine Boston University Boston MA
| |
Collapse
|
12
|
Belghasem ME, A'amar O, Roth D, Walker J, Arinze N, Richards SM, Francis JM, Salant DJ, Chitalia VC, Bigio IJ. Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy. Sci Rep 2019; 9:7168. [PMID: 31073168 PMCID: PMC6509114 DOI: 10.1038/s41598-019-43684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA. We propose a minimally-invasive optical method to assess the macro-architecture of kidney tissue, as an objective, quantitative assessment of IFTA, as an indicator of the degree of kidney disease. The method of elastic-scattering spectroscopy (ESS) measures backscattered light over the spectral range 320-900 nm and is highly sensitive to micromorphological changes in tissues. Using two discrete mouse models of CKD, we observed spectral trends of increased scattering intensity in the near-UV to short-visible region (350-450 nm), relative to longer wavelengths, for fibrotic kidneys compared to normal kidney, with a quasi-linear correlation between the ESS changes and the histopathology-determined degree of IFTA. These results suggest the potential of ESS as an objective, quantitative and faster assessment of IFTA for the management of CKD patients and in the allocation of organs for kidney transplantation.
Collapse
Affiliation(s)
- Mostafa E Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ousama A'amar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Daniel Roth
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joshua Walker
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nkiruka Arinze
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Sean M Richards
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jean M Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Veterans Administration Boston Healthcare system, Boston, MA, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Steelman ZA, Ho DS, Chu KK, Wax A. Light scattering methods for tissue diagnosis. OPTICA 2019; 6:479-489. [PMID: 33043100 PMCID: PMC7544148 DOI: 10.1364/optica.6.000479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light scattering has become a common biomedical research tool, enabling diagnostic sensitivity to myriad tissue alterations associated with disease. Light-tissue interactions are particularly attractive for diagnostics due to the variety of contrast mechanisms that can be used, including spectral, angle-resolved, and Fourier-domain detection. Photonic diagnostic tools offer further benefit in that they are non-ionizing, non-invasive, and give real-time feedback. In this review, we summarize recent innovations in light scattering technologies, with a focus on clinical achievements over the previous ten years.
Collapse
|
14
|
Lariviere B, Garman KS, Ferguson NL, Fisher DA, Jokerst NM. Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541510 PMCID: PMC5846520 DOI: 10.1364/boe.9.001164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Early detection and surveillance of disease progression in epithelial tissue is key to improving long term patient outcomes for colon and esophageal cancers, which account for nearly a quarter of cancer related mortalities worldwide. Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a non-invasive optical technique to sense biological changes at the cellular and sub-cellular level that occur when normal tissue becomes diseased, and has the potential to significantly improve the current standard of care for endoscopic gastrointestinal (GI) screening. Herein the design, fabrication, and characterization of the first custom SRDRS device to enable endoscopic SRDRS GI tissue characterization using a custom silicon (Si) thin film multi-pixel endoscopic optical sensor (MEOS) is described.
Collapse
Affiliation(s)
- Ben Lariviere
- Department of Electrical and Computer Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | | | | | | | - Nan M. Jokerst
- Department of Electrical and Computer Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
15
|
Sharaha U, Rodriguez-Diaz E, Riesenberg K, Bigio IJ, Huleihel M, Salman A. Using Infrared Spectroscopy and Multivariate Analysis to Detect Antibiotics' Resistant Escherichia coli Bacteria. Anal Chem 2017; 89:8782-8790. [PMID: 28731324 DOI: 10.1021/acs.analchem.7b01025] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial pathogens are one of the primary causes of human morbidity worldwide. Historically, antibiotics have been highly effective against most bacterial pathogens; however, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Early and rapid determination of bacterial susceptibility to antibiotics has become essential in many clinical settings and, sometimes, can save lives. Currently classical procedures require at least 48 h for determining bacterial susceptibility, which can constitute a life-threatening delay for effective treatment. Infrared (IR) microscopy is a rapid and inexpensive technique, which has been used successfully for the detection and identification of various biological samples; nonetheless, its true potential in routine clinical diagnosis has not yet been established. In this study, we evaluated the potential of this technique for rapid identification of bacterial susceptibility to specific antibiotics based on the IR spectra of the bacteria. IR spectroscopy was conducted on bacterial colonies, obtained after 24 h culture from patients' samples. An IR microscope was utilized, and a computational classification method was developed to analyze the IR spectra by novel pattern-recognition and statistical tools, to determine E. coli susceptibility within a few minutes to different antibiotics, gentamicin, ceftazidime, nitrofurantoin, nalidixic acid, ofloxacin. Our results show that it was possible to classify the tested bacteria into sensitive and resistant types, with success rates as high as 85% for a number of examined antibiotics. These promising results open the potential of this technique for faster determination of bacterial susceptibility to certain antibiotics.
Collapse
Affiliation(s)
- Uraib Sharaha
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Eladio Rodriguez-Diaz
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine , Boston, Massachusetts 02118, United States.,USA 2 Section of Gastroenterology, VA Boston Healthcare System , Boston, Massachusetts 02130, United States
| | | | - Irving J Bigio
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States.,Department of Electrical & Computer Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Ahmad Salman
- Department of Physics, SCE-Shamoon College of Engineering , Beer-Sheva 84100, Israel
| |
Collapse
|
16
|
Wan QS, Wang T, Zhang KH. Biomedical optical spectroscopy for the early diagnosis of gastrointestinal neoplasms. Tumour Biol 2017; 39:1010428317717984. [PMID: 28671054 DOI: 10.1177/1010428317717984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal cancer is a leading contributor to cancer-related morbidity and mortality worldwide. Early diagnosis currently plays a key role in the prognosis of patients with gastrointestinal cancer. Despite the advances in endoscopy over the last decades, missing lesions, undersampling and incorrect sampling in biopsies, as well as invasion still result in a poor diagnostic rate of early gastrointestinal cancers. Accordingly, there is a pressing need to develop non-invasive methods for the early detection of gastrointestinal cancers. Biomedical optical spectroscopy, including infrared spectroscopy, Raman spectroscopy, diffuse scattering spectroscopy and autofluorescence, is capable of providing structural and chemical information about biological specimens with the advantages of non-destruction, non-invasion and reagent-free and waste-free analysis and has thus been widely investigated for the diagnosis of oesophageal, gastric and colorectal cancers. This review will introduce the advances of biomedical optical spectroscopy techniques, highlight their applications for the early detection of gastrointestinal cancers and discuss their limitations.
Collapse
Affiliation(s)
- Qin-Si Wan
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Salman A, Sharaha U, Rodriguez-Diaz E, Shufan E, Riesenberg K, Bigio IJ, Huleihel M. Detection of antibiotic resistant Escherichia Coli bacteria using infrared microscopy and advanced multivariate analysis. Analyst 2017; 142:2136-2144. [DOI: 10.1039/c7an00192d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DeterminingE. colibacteria susceptibility by analyzing their FTIR spectra using multivariate analysis.
Collapse
Affiliation(s)
- Ahmad Salman
- Department of Physics
- SCE – Shamoon College of Engineering
- Beer-Sheva 84100
- Israel
| | - Uraib Sharaha
- Department of Microbiology
- Immunology and Genetics
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - Eladio Rodriguez-Diaz
- Department of Medicine
- Section of Gastroenterology
- Boston University School of Medicine
- Boston
- USA
| | - Elad Shufan
- Department of Physics
- SCE – Shamoon College of Engineering
- Beer-Sheva 84100
- Israel
| | | | - Irving J. Bigio
- Department of Biomedical Engineering
- Boston University
- Boston
- USA
- Department of Electrical & Computer Engineering
| | | |
Collapse
|
18
|
Review: in vivo optical spectral tissue sensing-how to go from research to routine clinical application? Lasers Med Sci 2016; 32:711-719. [PMID: 27909918 DOI: 10.1007/s10103-016-2119-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Innovations in optical spectroscopy have helped the technology reach a point where performance previously seen only in laboratory settings can be translated and tested in real-world applications. In the field of oncology, spectral tissue sensing (STS) by means of optical spectroscopy is considered to have major potential for improving diagnostics and optimizing treatment outcome. The concept has been investigated for more than two decades and yet spectral tissue sensing is not commonly employed in routine medical practice. It is therefore important to understand what is needed to translate technological advances and insights generated through basic scientific research in this field into clinical practice. The aim of the discussion presented here is not to provide a comprehensive review of all work published over the last decades but rather to highlight some of the challenges found in literature and encountered by our group in the quest to translate optical technologies into useful clinical tools. Furthermore, an outlook is proposed on how translational researchers could proceed to eventually have STS incorporated in the process of clinical decision-making.
Collapse
|
19
|
Visgauss JD, Eward WC, Brigman BE. Innovations in Intraoperative Tumor Visualization. Orthop Clin North Am 2016; 47:253-64. [PMID: 26614939 DOI: 10.1016/j.ocl.2015.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the surgical management of solid tumors, adequacy of tumor resection has implications for local recurrence and survival. The standard method of intraoperative identification of tumor margin is frozen section pathologic analysis, which is time-consuming with potential for sampling error. Intraoperative tumor visualization has the potential to significantly improve surgical cancer care across disciplines, by guiding accuracy of biopsies, increasing adequacy of resections, directing adjuvant therapy, and even providing diagnostic information. We provide an outline of various methods of intraoperative tumor visualization developed to aid in the real-time assessment of tumor extent and adequacy of resection.
Collapse
Affiliation(s)
- Julia D Visgauss
- Department of Orthopaedic Surgery, Duke University, Box 3312 DUMC, Durham, NC 27710, USA
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University, Box 3312 DUMC, Durham, NC 27710, USA
| | - Brian E Brigman
- Department of Orthopaedic Surgery, Duke University, Box 3312 DUMC, Durham, NC 27710, USA.
| |
Collapse
|