1
|
Toms M, Heppell C, Owen N, Malka S, Moosajee M. A Novel De Novo Missense Variant in Netrin-1 (NTN1) Associated With Chorioretinal Coloboma, Sensorineural Hearing Loss and Polydactyly. Clin Genet 2024. [PMID: 39648562 DOI: 10.1111/cge.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish. Here, we report the first patient with chorioretinal coloboma and microphthalmia harbouring a novel heterozygous likely pathogenic NTN1 missense variant, c.1483T>A p.(Tyr495Asn), validating a conserved gene function in ocular development. In addition, the patient displayed bilateral sensorineural hearing loss which was investigated by examining the sensory hair cells of ntn1a morphant zebrafish, suggesting a role for netrin-1 in hair cell development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
| | - Cara Heppell
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Samantha Malka
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Kunisetty B, Martin-Giacalone BA, Zhao X, Luna PN, Brooks BP, Hufnagel RB, Shaw CA, Rosenfeld JA, Agopian AJ, Lupo PJ, Scott DA. High Clinical Exome Sequencing Diagnostic Rates and Novel Phenotypic Expansions for Nonisolated Microphthalmia, Anophthalmia, and Coloboma. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38502138 PMCID: PMC10959191 DOI: 10.1167/iovs.65.3.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose A molecular diagnosis is only made in a subset of individuals with nonisolated microphthalmia, anophthalmia, and coloboma (MAC). This may be due to underutilization of clinical (whole) exome sequencing (cES) and an incomplete understanding of the genes that cause MAC. The purpose of this study is to determine the efficacy of cES in cases of nonisolated MAC and to identify new MAC phenotypic expansions. Methods We determined the efficacy of cES in 189 individuals with nonisolated MAC. We then used cES data, a validated machine learning algorithm, and previously published expression data, case reports, and animal models to determine which candidate genes were most likely to contribute to the development of MAC. Results We found the efficacy of cES in nonisolated MAC to be between 32.3% (61/189) and 48.1% (91/189). Most genes affected in our cohort were not among genes currently screened in clinically available ophthalmologic gene panels. A subset of the genes implicated in our cohort had not been clearly associated with MAC. Our analyses revealed sufficient evidence to support low-penetrance MAC phenotypic expansions involving nine of these human disease genes. Conclusions We conclude that cES is an effective means of identifying a molecular diagnosis in individuals with nonisolated MAC and may identify putatively damaging variants that would be missed if only a clinically available ophthalmologic gene panel was obtained. Our data also suggest that deleterious variants in BRCA2, BRIP1, KAT6A, KAT6B, NSF, RAC1, SMARCA4, SMC1A, and TUBA1A can contribute to the development of MAC.
Collapse
Affiliation(s)
- Bhavana Kunisetty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Bailey A. Martin-Giacalone
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Baylor Genetics, Houston, Texas, United States
| | - Pamela N. Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Brian P. Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, NIH, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, NIH, Bethesda, Maryland, United States
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States
| | - Philip J. Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Li X, Owen LA, Taylor KD, Ostmo S, Chen YDI, Coyner AS, Sonmez K, Hartnett ME, Guo X, Ipp E, Roll K, Genter P, Chan RVP, DeAngelis MM, Chiang MF, Campbell JP, Rotter JI. Genome-wide association identifies novel ROP risk loci in a multiethnic cohort. Commun Biol 2024; 7:107. [PMID: 38233474 PMCID: PMC10794688 DOI: 10.1038/s42003-023-05743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA.
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA.
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Ostmo
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Aaron S Coyner
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kemal Sonmez
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eli Ipp
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kathryn Roll
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pauline Genter
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Margaret M DeAngelis
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA
- Department of Biochemistry; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
- Department of Neuroscience; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
- Department of Genetics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/State University of New York (SUNY), Buffalo, NY, USA
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - J Peter Campbell
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
4
|
Smits JGA, Cunha DL, Amini M, Bertolin M, Laberthonnière C, Qu J, Owen N, Latta L, Seitz B, Roux LN, Stachon T, Ferrari S, Moosajee M, Aberdam D, Szentmary N, van Heeringen SJ, Zhou H. Identification of the regulatory circuit governing corneal epithelial fate determination and disease. PLoS Biol 2023; 21:e3002336. [PMID: 37856539 PMCID: PMC10586658 DOI: 10.1371/journal.pbio.3002336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.
Collapse
Affiliation(s)
- Jos G. A. Smits
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Dulce Lima Cunha
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Camille Laberthonnière
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jieqiong Qu
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | | | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel Aberdam
- INSERM U976, Paris, France
- Université de Paris, INSERM U1138, Centre des Cordeliers, Paris, France
| | - Nora Szentmary
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Simon J. van Heeringen
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Huiqing Zhou
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Trejo-Reveles V, Owen N, Ching Chan BH, Toms M, Schoenebeck JJ, Moosajee M, Rainger J. Identification of Novel Coloboma Candidate Genes through Conserved Gene Expression Analyses across Four Vertebrate Species. Biomolecules 2023; 13:293. [PMID: 36830662 PMCID: PMC9953556 DOI: 10.3390/biom13020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Ocular coloboma (OC) is a failure of complete optic fissure closure during embryonic development and presents as a tissue defect along the proximal-distal axis of the ventral eye. It is classed as part of the clinical spectrum of structural eye malformations with microphthalmia and anophthalmia, collectively abbreviated to MAC. Despite deliberate attempts to identify causative variants in MAC, many patients remain without a genetic diagnosis. To reveal potential candidate genes, we utilised transcriptomes experimentally generated from embryonic eye tissues derived from humans, mice, zebrafish, and chicken at stages coincident with optic fissure closure. Our in-silico analyses found 10 genes with optic fissure-specific enriched expression: ALDH1A3, BMPR1B, EMX2, EPHB3, NID1, NTN1, PAX2, SMOC1, TENM3, and VAX1. In situ hybridization revealed that all 10 genes were broadly expressed ventrally in the developing eye but that only PAX2 and NTN1 were expressed in cells at the edges of the optic fissure margin. Of these conserved optic fissure genes, EMX2, NID1, and EPHB3 have not previously been associated with human MAC cases. Targeted genetic manipulation in zebrafish embryos using CRISPR/Cas9 caused the developmental MAC phenotype for emx2 and ephb3. We analysed available whole genome sequencing datasets from MAC patients and identified a range of variants with plausible causality. In combination, our data suggest that expression of genes involved in ventral eye development is conserved across a range of vertebrate species and that EMX2, NID1, and EPHB3 are candidate loci that warrant further functional analysis in the context of MAC and should be considered for sequencing in cohorts of patients with structural eye malformations.
Collapse
Affiliation(s)
- Violeta Trejo-Reveles
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
| | - Brian Ho Ching Chan
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
| | - Jeffrey J. Schoenebeck
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Joe Rainger
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|