1
|
Valenzuela I, Codina-Solà M, Vazquez E, Cueto-González A, Leno-Colorado J, Lasa-Aranzasti A, Trujillano L, Masotto B, Masas M, Escobar M, García-Arumí E, Tizzano EF. Deep phenotyping of 11 individuals with pathogenic variants in RNU4-2 reveals a clinically recognizable syndrome. Genet Med 2024; 26:101288. [PMID: 39369315 DOI: 10.1016/j.gim.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE Despite ever-increasing knowledge of the genetic etiologies of neurodevelopmental disorders, approximately half remain undiagnosed after exome or genome sequencing. Here, we provide a deep clinical characterization of 11 previously unreported patients with a recently described neurodevelopmental disorder (NDD) due to pathogenic variants in RNU4-2. METHODS The 11 patients were identified in a pool of 70 patients selected for targeted RNU4-2 sequencing on the basis of their clinical phenotypes from a cohort of 1032 individuals with a NDD and without a prior genetic diagnosis. RESULTS The 11 patients were aged between 13 months and 36 years. All patients showed moderate to severe developmental delay and/or intellectual disability. Height and weight were below 10th percentile and most showed microcephaly. In almost 50% of the patients, intrauterine growth retardation was detected. All patients showed a distinctive pattern of dysmorphic features, including hooded upper eyelid and epicanthus, full cheeks, tented philtrum, mouth constantly slightly open with an everted lower lip vermilion, high palate, and profuse drooling. Of 11 patients, 64% also presented with ophthalmological problems (mainly strabismus, nystagmus, and refraction errors) and 64% had musculoskeletal features (joint hypermobility, mild scoliosis, and easy fractures). CONCLUSION This work provides an improved characterization of the phenotypic spectrum of RNU4-2 syndrome across different age groups and demonstrates that thorough clinical assessment of patients with an NDD can be enhanced significantly for this novel syndrome.
Collapse
Affiliation(s)
- Irene Valenzuela
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
| | - Marta Codina-Solà
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Elida Vazquez
- Department of Pediatric Radiology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Cueto-González
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jordi Leno-Colorado
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Laura Trujillano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Bárbara Masotto
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Miriam Masas
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mar Escobar
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Elena García-Arumí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Ahn JH, Yoon JG, Cho J, Lee S, Kim S, Kim MJ, Kim SY, Lee ST, Chu K, Lee SK, Kim HJ, Youn J, Jang JH, Chae JH, Moon J, Cho JW. Implementing genomic medicine in clinical practice for adults with undiagnosed rare diseases. NPJ Genom Med 2024; 9:63. [PMID: 39609445 PMCID: PMC11604660 DOI: 10.1038/s41525-024-00449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
The global burden of undiagnosed diseases, particularly in adults, is rising due to their significant socioeconomic impact. To address this, we enrolled 232 adult probands with undiagnosed conditions, utilizing bioinformatics tools for genetic analysis. Alongside exome and genome sequencing, repeat-primed PCR and Cas9-mediated nanopore sequencing were applied to suspected short tandem repeat disorders. Probands were classified into probable genetic (n = 128) or uncertain (n = 104) origins. The study found genetic causes in 66 individuals (28.4%) and non-genetic causes in 12 (5.2%), with a longer diagnostic journey for those in the probable genetic group or with pediatric symptom onset, emphasizing the need for increased efforts in these populations. Genetic diagnoses facilitated effective surveillance, cascade screening, drug repurposing, and pregnancy planning. This study demonstrates that integrating sequencing technologies improves diagnostic accuracy, may shorten the time to diagnosis, and enhances personalized management for adults with undiagnosed diseases.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Slaba K, Pokorna P, Jugas R, Palova H, Prochazkova D, Aulicka S, Spanelova K, Danhofer P, Horak O, Tuckova J, Kleiblova P, Gaillyova R, Hrunka M, Jouza M, Pinkova B, Papez J, Konecna P, Zidkova J, Stourac P, Sterba J, Demlova R, Demlova E, Jabandziev P, Slaby O. Diagnostic efficacy and clinical utility of whole-exome sequencing in Czech pediatric patients with rare and undiagnosed diseases. Sci Rep 2024; 14:28780. [PMID: 39567597 PMCID: PMC11579298 DOI: 10.1038/s41598-024-79872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
In the last decade, undiagnosed disease programs have emerged to address the significant number of individuals with suspected but undiagnosed rare genetic diseases. In our single-center study, we have launched a pilot program for pediatric patients with undiagnosed diseases in the second-largest university hospital in the Czech Republic. This study was prospectively conducted at the Department of Pediatrics at University Hospital Brno between 2020 and 2023. A total of 58 Czech patients with undiagnosed diseases were enrolled in the study. All children underwent singleton WES with targeted phenotype-driven analysis. We identified 28 variants, including 11 pathogenic, 13 likely pathogenic, and 4 VUS according to ACMG guidelines, as diagnostic of genetic diseases in 25 patients, resulting in an overall diagnostic yield of 43%. Eleven variants were novel and had not been previously reported in any public database. The overall clinical utility (actionability) enabling at least one type of change in the medical care of the patient was 76%, whereas the average number of clinical implications to individual patient care was two. Singleton WES facilitated the diagnostic process in the Czech undiagnosed pediatric population. We believe it is an effective approach to enable appropriate counseling, surveillance, and personalized clinical management.
Collapse
Affiliation(s)
- Katerina Slaba
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic.
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Robin Jugas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hana Palova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dagmar Prochazkova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Stefania Aulicka
- Department of Pediatric Neurology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Spanelova
- Department of Pediatric Neurology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Danhofer
- Department of Pediatric Neurology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Horak
- Department of Pediatric Neurology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Tuckova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Matej Hrunka
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Martin Jouza
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Blanka Pinkova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Jan Papez
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Petra Konecna
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
| | - Jana Zidkova
- Centre of Molecular Biology and Genetics, Department of Hematology, Oncology and Internal Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Petr Stourac
- Department of Pediatric Anesthesiology and Intensive Care Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology/CZECRIN, Masaryk University Faculty of Medicine, Brno, Czech Republic
| | - Eva Demlova
- Department of Pharmacology/CZECRIN, Masaryk University Faculty of Medicine, Brno, Czech Republic
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Center of Precision Medicine, Department of Pathology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Ament IH, DeBruyne N, Wang F, Lin L. Long-read RNA sequencing: A transformative technology for exploring transcriptome complexity in human diseases. Mol Ther 2024:S1525-0016(24)00752-4. [PMID: 39563027 DOI: 10.1016/j.ymthe.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Long-read RNA sequencing (RNA-seq) is emerging as a powerful and versatile technology for studying human transcriptomes. By enabling the end-to-end sequencing of full-length transcripts, long-read RNA-seq opens up avenues for investigating various RNA species and features that cannot be reliably interrogated by standard short-read RNA-seq methods. In this review, we present an overview of long-read RNA-seq, delineating its strengths over short-read RNA-seq, as well as summarizing recent advances in experimental and computational approaches to boost the power of long-read-based transcriptomics. We describe a wide range of applications of long-read RNA-seq, and highlight its expanding role as a foundational technology for exploring transcriptome variations in human diseases.
Collapse
Affiliation(s)
| | - Nicole DeBruyne
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Wang
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Lan Lin
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Bazalar-Montoya J, Cornejo-Olivas M, Duenas-Roque MM, Purizaca-Rosillo N, Rodriguez RS, Milla-Neyra K, De La Torre-Hernandez CA, Sarapura-Castro E, Galarreta Aima CI, Manassero-Morales G, Chávez-Pasco G, Celis-García L, La Serna-Infantes JE, Chekalin E, Thorpe E, Taft RJ. Clinical genome sequencing in patients with suspected rare genetic disease in Peru. NPJ Genom Med 2024; 9:51. [PMID: 39468051 PMCID: PMC11519459 DOI: 10.1038/s41525-024-00434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
There is limited access to molecular genetic testing in most low- and middle-income countries. The iHope program provides clinical genome sequencing (cGS) to underserved individuals with signs or symptoms of rare genetic diseases and limited or no access to molecular genetic testing. Here we describe the performance and impact of cGS in 247 patients from three clinics in Peru. Although most patients had at least one genetic test prior to cGS (70.9%), the most frequent was karyotyping (53.4%). The diagnostic yield of cGS was 54.3%, with candidate variants reported in an additional 22.3% of patients. Clinical GS results impacted clinician diagnostic evaluation in 85.0% and genetic counseling in 72.1% of cases. Changes in management were reported in 71.3%, inclusive of referrals (64.7%), therapeutics (26.3%), laboratory or physiological testing (25.5%), imaging (19%), and palliative care (17.4%), suggesting that increased availability of genomic testing in Peru would enable improved patient management.
Collapse
Affiliation(s)
- Jeny Bazalar-Montoya
- Instituto Nacional de Salud del Niño San Borja, Lima, Peru
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | | | - Richard S Rodriguez
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Karina Milla-Neyra
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | - Elison Sarapura-Castro
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | | | | | | | - Jorge E La Serna-Infantes
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Instituto de Investigaciones en Ciencias Biomédicas (INICIB), Facultad de Medicina, Universidad Ricardo Palma, Lima, Peru
| | | | - Erin Thorpe
- Illumina Inc, San Diego, CA, USA
- Genetic Alliance, Damascus, MD, USA
| | - Ryan J Taft
- Illumina Inc, San Diego, CA, USA.
- Genetic Alliance, Damascus, MD, USA.
| |
Collapse
|
6
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2024; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
7
|
Blair DR, Risch N. Dissecting the Reduced Penetrance of Putative Loss-of-Function Variants in Population-Scale Biobanks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314008. [PMID: 39399029 PMCID: PMC11469360 DOI: 10.1101/2024.09.23.24314008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Loss-of-function variants (LoFs) disrupt the activity of their impacted gene. They are often associated with clinical phenotypes, including autosomal dominant diseases driven by haploinsufficiency. Recent analyses using biobanks have suggested that LoF penetrance for some haploinsufficient disorders may be low, an observation that has important implications for population genomic screening. However, biobanks are also rife with missing data, and the reliability of these findings remains uncertain. Here, we examine the penetrance of putative LoFs (pLoFs) using a cohort of ≈24,000 carriers derived from two population-scale biobanks: the UK Biobank and the All of Us Research Program. We investigate several possible etiologies for reduced pLoF penetrance, including biobank recruitment biases, annotation artifacts, missed diagnoses, and incomplete clinical records. Systematically accounting for these factors increased penetrance, but widespread reduced penetrance remained. Therefore, we hypothesized that other factors must be driving this phenomenon. To test this, we trained machine learning models to identify pLoFs with high penetrance using the genomic features specific to each variant. These models were predictive of penetrance across a range of diseases and ploF types, including those with prior evidence for pathogenicity. This suggests that reduced ploF penetrance is in fact common, and care should be taken when counseling asymptomatic carriers.
Collapse
Affiliation(s)
- David R. Blair
- Division of Medical Genetics, Department of Pediatrics
- University of California San Francisco
| | - Neil Risch
- Department of Epidemiology & Biostatistics
- University of California San Francisco
| |
Collapse
|
8
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
9
|
Higashimoto T, Garber M, Hipp L, Damon J, Li Q. Atypical Presentation of Congenital Insensitivity to Pain With Anhidrosis Leading to Diagnostic Odyssey. Mol Genet Genomic Med 2024; 12:e70027. [PMID: 39465509 PMCID: PMC11513606 DOI: 10.1002/mgg3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Congenital insensitivity to pain with anhidrosis (CIPA) (OMIM 256800) is a rare autosomal-recessive condition, also known as hereditary sensory and autonomic neuropathy type IV (HSAN-IV). The most commonly reported features include anhidrosis, intellectual disability, self-mutilation, febrile episodes, impaired temperature perception, recurrent infections and/or autonomic nervous system impairment. Major joint destruction and joint deformity known as Charcot (neuropathic) joints are also seen in CIPA patients attributed to insensitivity to joint pain. METHODS We present a case of a 46-year-old female affected with CIPA with a known NTRK1 variant and previously unidentified variant. Minigene reporter constructs were generated encompassing the exon 8 to exon 13 of the NTRK1 gene using the reference sequence and one harboring c.1483 + 5G > A variant identified in our proband. Minigene constructs were transfected into HEK293T cells, and the transcript was analysed for splicing to evaluate the effect of this variant in splicing. RESULTS The patient (46-year-old female) exhibited right ankle joint deformity around 5 years of age. Patient also experienced lumbar compression and knee damage in adulthood. She had undergone a significant number of evaluations without clear diagnosis. Her presentation lacked many of the common clinical presentations of CIPA, and therefore, the focus of her evaluation was directed towards her unexplained joint deformities. Exome sequencing revealed a known pathogenic variant in NTRK1 (c.851 - 33T > A:p.? [Intron 7]) and a novel NTRK1 variant (c.1483 + 5G > A:p.? [Intron 11]), which was later re-classified as likely pathogenic. The patient was started on a biologic disease-modifying anti-rheumatic medication (bDMARD) due to a possible inflammatory etiology of her joint deformity. Molecular diagnosis allowed for modification of her treatment and surveillance strategies. Our minigene splicing assay demonstrated that the presence of the c.1483 + 5G > A variant has a negative effect on splicing, supporting the pathogenicity of this novel variant.
Collapse
Affiliation(s)
- Tomoyasu Higashimoto
- Division of Genetic Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Division of Genetics, Genomics, and Metabolism, Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | - Martin E. Garber
- Division of Rheumatology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Lauren Hipp
- Division of Genetic Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jenna Damon
- Division of Genetic Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Qing Li
- Division of Hematology/Oncology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Nakamichi K, Huey J, Sangermano R, Place EM, Bujakowska KM, Marra M, Everett LA, Yang P, Chao JR, Van Gelder RN, Mustafi D. Targeted long-read sequencing enriches disease-relevant genomic regions of interest to provide complete Mendelian disease diagnostics. JCI Insight 2024; 9:e183902. [PMID: 39264853 PMCID: PMC11530123 DOI: 10.1172/jci.insight.183902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Despite advances in sequencing technologies, a molecular diagnosis remains elusive in many patients with Mendelian disease. Current short-read clinical sequencing approaches cannot provide chromosomal phase information or epigenetic information without further sample processing, which is not routinely done and can result in an incomplete molecular diagnosis in patients. The ability to provide phased genetic and epigenetic information from a single sequencing run would improve the diagnostic rate of Mendelian conditions. Here, we describe targeted long-read sequencing of Mendelian disease genes (TaLon-SeqMD) using a real-time adaptive sequencing approach. Optimization of bioinformatic targeting enabled selective enrichment of multiple disease-causing regions of the human genome. Haplotype-resolved variant calling and simultaneous resolution of epigenetic base modification could be achieved in a single sequencing run. The TaLon-SeqMD approach was validated in a cohort of 18 individuals with previous genetic testing targeting 373 inherited retinal disease (IRD) genes, yielding the complete molecular diagnosis in each case. This approach was then applied in 2 IRD cases with inconclusive testing, which uncovered noncoding and structural variants that were difficult to characterize by standard short-read sequencing. Overall, these results demonstrate TaLon-SeqMD as an approach to provide rapid phased-variant calling to provide the molecular basis of Mendelian diseases.
Collapse
Affiliation(s)
- Kenji Nakamichi
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Jennifer Huey
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Molly Marra
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lesley A. Everett
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology and Biological Structure, University of Washington, Seattle, Washington, USA
| | - Debarshi Mustafi
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
11
|
Trégouët DA, Morange PE. Next-generation sequencing strategies in venous thromboembolism: in whom and for what purpose? J Thromb Haemost 2024; 22:1826-1834. [PMID: 38641321 DOI: 10.1016/j.jtha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
This invited review follows the oral presentation "To Sequence or Not to Sequence, That Is Not the Question; But 'When, Who, Which and What For?' Is" given during the State of the Art session "Translational Genomics in Thrombosis: From OMICs to Clinics" of the International Society on Thrombosis and Haemostasis 2023 Congress. Emphasizing the power of next-generation sequencing technologies and the diverse strategies associated with DNA variant analysis, this review highlights the unresolved questions and challenges in their implementation both for the clinical diagnosis of venous thromboembolism and in translational research.
Collapse
Affiliation(s)
- David-Alexandre Trégouët
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, Unité Mixte de Recherche 1219, Bordeaux, France.
| | - Pierre-Emmanuel Morange
- Cardiovascular and Nutrition Research Center (Centre de Recherche en CardioVasculaire et Nutrition), Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l' Alimentation et l'Environnement, Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Xu K, Li G, Wu Z, Zhang TJ, Wu N. Diagnosis and treatment of the Ehlers-Danlos syndromes in China: synopsis of the first guidelines. Orphanet J Rare Dis 2024; 19:194. [PMID: 38741208 DOI: 10.1186/s13023-024-03121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The Ehlers-Danlos syndromes (EDS) are a group of rare hereditary connective tissue disorders. EDS is clinically and genetically heterogeneous and usually involves multiple systems. There are 14 subtypes of EDS with hallmark features including joint hypermobility, skin hyperextensibility, and tissue fragility. The clinical manifestations and their severity differ among the subtypes, encompassing recurrent joint dislocations, scoliosis, arterial aneurysm and dissection, and organ rupture. Challenges in diagnosis and management arise from the complexity of the disease, which is further complicated by its rarity. The development of clinical guidelines and implementation of coordinated multi-disciplinary team (MDT) approaches have emerged as global priorities. MAIN BODY Chinese Multi-Disciplinary Working Group on the Ehlers-Danlos Syndromes was therefore established. Healthcare professionals were recruited from 25 top hospitals across China. The experts are specialized in 24 fields, including genetics, vascular surgery, dermatology, and orthopedics, as well as nursing care, rehabilitation, psychology, and nutrition. Based on GRADE methodology, the Guidelines were written by the Group supervised by methodologists, following a systemic review of all 4453 articles in PubMed published before August 9, 2023, using the search term "Ehlers Danlos". A coordinated MDT approach for the diagnosis and management of EDS is highly recommended by the Group, along with 29 specific recommendations addressing key clinical questions. In addition to the treatment plan, the Guidelines also emphasize integrating support from nursing care, rehabilitation, psychology, and nutrition. This integration not only facilitates recovery in hospital settings, but most importantly, the transition from an illness-defined life to a more "normalized" life. CONCLUSION The first guidelines on EDS will shorten the diagnostic odyssey and solve the unmet medical needs of the patients. This article is a synopsis of the full guidelines.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Guozhuang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
14
|
Kerkhof J, Rastin C, Levy MA, Relator R, McConkey H, Demain L, Dominguez-Garrido E, Kaat LD, Houge SD, DuPont BR, Fee T, Fletcher RS, Gokhale D, Haukanes BI, Henneman P, Hilton S, Hilton BA, Jenkinson S, Lee JA, Louie RJ, Motazacker MM, Rzasa J, Stevenson RE, Plomp A, van der Laan L, van der Smagt J, Walden KK, Banka S, Mannens M, Skinner SA, Friez MJ, Campbell C, Tedder ML, Alders M, Sadikovic B. Diagnostic utility and reporting recommendations for clinical DNA methylation episignature testing in genetically undiagnosed rare diseases. Genet Med 2024; 26:101075. [PMID: 38251460 DOI: 10.1016/j.gim.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
PURPOSE This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.
Collapse
Affiliation(s)
- Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Cassandra Rastin
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sofia Douzgou Houge
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | | | | | | | - David Gokhale
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Bjørn Ivar Haukanes
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | - Peter Henneman
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | | | - M Mahdi Motazacker
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Astrid Plomp
- Department of Clinical Genetics, AMC, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jasper van der Smagt
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Marcel Mannens
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | | | | | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Marielle Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
15
|
Mordaunt DA, Gonzalez FS, Lunke S, Eggers S, Sadedin S, Chong B, Dalziel K, Stark Z, Goranitis I. The cost of proband and trio exome and genome analysis in rare disease: A micro-costing study. Genet Med 2024; 26:101058. [PMID: 38164890 DOI: 10.1016/j.gim.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE Rare disease genomic testing is a complex process involving various resources. Accurate resource estimation is required for informed prioritization and reimbursement decisions. This study aims to analyze the costs and cost drivers of clinical genomic testing. METHODS Based on genomic sequencing workflows we microcosted limited virtual panel analysis on exome sequencing backbone, proband and trio exome, and genome testing for proband and trio analysis in 2023 Australian Dollars ($). Deterministic and probabilistic sensitivity analyses were undertaken. RESULTS Panel testing costs AUD $2373 ($733-$6166), and exome sequencing costs $2823 ($802-$7206) and $5670 ($2006-$11,539) for proband and trio analysis, respectively. Genome sequencing costs $4840 ($2153-$9890) and $11,589 ($5842-$16,562) for proband and trio analysis. The most expensive cost component of genomic testing was sequencing (36.9%-69.4% of total cost), with labor accounting for 27.1%-63.2% of total cost. CONCLUSION We provide a comprehensive analysis of rare disease genomic testing costs, for a range of clinical testing types and contexts. This information will accurately inform economic evaluations of rare disease genomic testing and decision making on policy settings that assist with implementation, such as genomic testing reimbursement.
Collapse
Affiliation(s)
- Dylan A Mordaunt
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia
| | - Francisco Santos Gonzalez
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia; Australian Genomics Health Alliance, Melbourne, Australia; Department of Pathology. University of Melbourne, Australia
| | - Stefanie Eggers
- Murdoch Children's Research Institute, Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia
| | - Simon Sadedin
- Murdoch Children's Research Institute, Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia
| | - Belinda Chong
- Murdoch Children's Research Institute, Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia
| | - Kim Dalziel
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Australia; Women's and Children's Division, Southern Adelaide Local Health Network, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ilias Goranitis
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics Health Alliance, Melbourne, Australia.
| |
Collapse
|
16
|
Cirillo L, Becherucci F. The evolving role of first-tier exome sequencing in medical diagnostics. Nephrol Dial Transplant 2024; 39:560-563. [PMID: 37858299 DOI: 10.1093/ndt/gfad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
17
|
Riess O, Sturm M, Menden B, Liebmann A, Demidov G, Witt D, Casadei N, Admard J, Schütz L, Ossowski S, Taylor S, Schaffer S, Schroeder C, Dufke A, Haack T. Genomes in clinical care. NPJ Genom Med 2024; 9:20. [PMID: 38485733 PMCID: PMC10940576 DOI: 10.1038/s41525-024-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.
Collapse
Affiliation(s)
- Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany.
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany.
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Benita Menden
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | | | | | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Wigby KM, Brockman D, Costain G, Hale C, Taylor SL, Belmont J, Bick D, Dimmock D, Fernbach S, Greally J, Jobanputra V, Kulkarni S, Spiteri E, Taft RJ. Evidence review and considerations for use of first line genome sequencing to diagnose rare genetic disorders. NPJ Genom Med 2024; 9:15. [PMID: 38409289 PMCID: PMC10897481 DOI: 10.1038/s41525-024-00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.
Collapse
Affiliation(s)
- Kristen M Wigby
- University of California, Davis, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| | | | | | | | | | - John Belmont
- Genetics & Genomics Services Inc, Houston, TX, USA
| | | | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - John Greally
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
19
|
Choi WJ, Kim SH, Lee SR, Oh SH, Kim SW, Shin HY, Park HJ. Global carrier frequency and predicted genetic prevalence of patients with pathogenic sequence variants in autosomal recessive genetic neuromuscular diseases. Sci Rep 2024; 14:3806. [PMID: 38361118 PMCID: PMC10869705 DOI: 10.1038/s41598-024-54413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Genetic neuromuscular diseases are clinically and genetically heterogeneous genetic disorders that primarily affect the peripheral nerves, muscles, and neuromuscular junctions. This study aimed to identify pathogenic variants, calculate carrier frequency, and predict the genetic prevalence of autosomal recessive neuromuscular diseases (AR-NMDs). We selected 268 AR-NMD genes and analyzed their genetic variants sourced from the gnomAD database. After identifying the pathogenic variants using an algorithm, we calculated the carrier frequency and predicted the genetic prevalence of AR-NMDs. In total, 10,887 pathogenic variants were identified, including 3848 literature verified and 7039 manually verified variants. In the global population, the carrier frequency of AR-NMDs is 32.9%, with variations across subpopulations ranging from 22.4% in the Finnish population to 36.2% in the non-Finnish European population. The predicted genetic prevalence of AR-NMDs was estimated to be 24.3 cases per 100,000 individuals worldwide, with variations across subpopulations ranging from 26.5 to 41.4 cases per 100,000 individuals in the Latino/Admixed American and the Ashkenazi Jewish populations, respectively. The AR-NMD gene with the highest carrier frequency was GAA (1.3%) and the variant with the highest allele frequency was c.-32-13 T>G in GAA with 0.0033 in the global population. Our study revealed a higher-than-expected frequency of AR-NMD carriers, constituting approximately one-third of the global population, highlighting ethnic heterogeneity in genetic susceptibility.
Collapse
Affiliation(s)
- Won-Jun Choi
- CHA University School of Medicine, Seongnam, Republic of Korea
| | - Soo-Hyun Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Sung Rok Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Waung MW, Ma F, Wheeler AG, Zai CC, So J. The Diagnostic Landscape of Adult Neurogenetic Disorders. BIOLOGY 2023; 12:1459. [PMID: 38132285 PMCID: PMC10740572 DOI: 10.3390/biology12121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Neurogenetic diseases affect individuals across the lifespan, but accurate diagnosis remains elusive for many patients. Adults with neurogenetic disorders often undergo a long diagnostic odyssey, with multiple specialist evaluations and countless investigations without a satisfactory diagnostic outcome. Reasons for these diagnostic challenges include: (1) clinical features of neurogenetic syndromes are diverse and under-recognized, particularly those of adult-onset, (2) neurogenetic syndromes may manifest with symptoms that span multiple neurological and medical subspecialties, and (3) a positive family history may not be present or readily apparent. Furthermore, there is a large gap in the understanding of how to apply genetic diagnostic tools in adult patients, as most of the published literature focuses on the pediatric population. Despite these challenges, accurate genetic diagnosis is imperative to provide affected individuals and their families guidance on prognosis, recurrence risk, and, for an increasing number of disorders, offer targeted treatment. Here, we provide a framework for recognizing adult neurogenetic syndromes, describe the current diagnostic approach, and highlight studies using next-generation sequencing in different neurological disease cohorts. We also discuss diagnostic pitfalls, barriers to achieving a definitive diagnosis, and emerging technology that may increase the diagnostic yield of testing.
Collapse
Affiliation(s)
- Maggie W. Waung
- Division of General Neurology, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Fion Ma
- Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Allison G. Wheeler
- Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clement C. Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Institute of Medical Science, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joyce So
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Antonatos C, Grafanaki K, Georgiou S, Evangelou E, Vasilopoulos Y. Disentangling the complexity of psoriasis in the post-genome-wide association era. Genes Immun 2023; 24:236-247. [PMID: 37717118 DOI: 10.1038/s41435-023-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In recent years, genome-wide association studies (GWAS) have been instrumental in unraveling the genetic architecture of complex diseases, including psoriasis. The application of large-scale GWA studies in psoriasis has illustrated several associated loci that participate in the cutaneous inflammation, however explaining a fraction of the disease heritability. With the advent of high-throughput sequencing technologies and functional genomics approaches, the post-GWAS era aims to unravel the functional mechanisms underlying the inter-individual variability in psoriasis patients. In this review, we present the key advances of psoriasis GWAS in under-represented populations, rare, non-coding and structural variants and epistatic phenomena that orchestrate the interplay between different cell types. We further review the gene-gene and gene-environment interactions contributing to the disease predisposition and development of comorbidities through Mendelian randomization studies and pleiotropic effects of psoriasis-associated loci. We finally examine the holistic approaches conducted in psoriasis through system genetics and state-of-the-art transcriptomic analyses, discussing their potential implication in the expanding field of precision medicine and characterization of comorbidities.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
22
|
Glotov OS, Chernov AN, Glotov AS. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J Pers Med 2023; 13:1236. [PMID: 37623486 PMCID: PMC10455459 DOI: 10.3390/jpm13081236] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Today, whole-exome sequencing (WES) is used to conduct the massive screening of structural and regulatory genes in order to identify the allele frequencies of disease-associated polymorphisms in various populations and thus detect pathogenic genetic changes (mutations or polymorphisms) conducive to malfunctional protein sequences. With its extensive capabilities, exome sequencing today allows both the diagnosis of monogenic diseases (MDs) and the examination of seemingly healthy populations to reveal a wide range of potential risks prior to disease manifestation (in the future, exome sequencing may outpace costly and less informative genome sequencing to become the first-line examination technique). This review establishes the human genetic passport as a new WES-based clinical concept for the identification of new candidate genes, gene variants, and molecular mechanisms in the diagnosis, prediction, and treatment of monogenic, oligogenic, and multifactorial diseases. Various diseases are addressed to demonstrate the extensive potential of WES and consider its advantages as well as disadvantages. Thus, WES can become a general test with a broad spectrum pf applications, including opportunistic screening.
Collapse
Affiliation(s)
- Oleg S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Alexander N. Chernov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
| |
Collapse
|
23
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|