1
|
Yang Y, Zhao A, Wang T, Tang Q, Qi S, Shi X, Wang F, Gao Y. Identification of driving genes of recurrent miscarriage based on transcriptome sequencing and immunoinfiltration analysis. Int Immunopharmacol 2024; 143:113095. [PMID: 39395380 DOI: 10.1016/j.intimp.2024.113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/14/2024]
Abstract
AIMS Recurrent miscarriage (RM) plagues 1 %-5 % women of childbearing age. Facing the limitations of clinical treatment, its pathological mechanism remains to be clarified. METHODS Decidual tissues of three induced abortions and three RM were collected for transcriptome sequencing. The pathological features of RM were identified by differential expression genes (DEGs) analysis, GSEA, GO and KEGG analysis, and a protein-protein interaction network was constructed for DEGs, and six algorithms were used to identify hub genes. In addition, the immune characteristics of RM patients were identified by CIBERSORT, and the correlation between them and hub genes was analyzed. Furthermore, in single-cell level, different cells were grouped according to the expression level of hub genes, and the expression ratio and abundance of hub genes in different cells and their regulation on cell function were explored. RESULTS Transcriptome sequencing of patients with RM showed that a large number of genes were down-regulated, which was related to fibroblast proliferation, epithelial cell migration, female pregnancy and cell chemotaxis. Fifteen hub genes were identified by constructing a protein-protein interaction network, among which DUSP1, NR4A1 and THBS1 were involved in cell migration and chemotaxis. Immune cell infiltration analysis showed that the infiltration of T cells, macrophages and NK cells was abnormal, and there was a significant correlation with hub genes. Moreover, we found that compared with the expression of DUSP1, the non-expression of DUSP1 will reduce the extracellular matrix formation of fibroblasts and the chemotaxis of macrophages. At the same time, it is worth noting that the expression ratio and abundance of hub genes are decreased in epithelial cells, fibroblasts, macrophages and NK cells. Furthermore, single-cell analysis and in vitro and in vivo experiments show that DUSP1 and NR4A1 are low-expressed in different cells of RM patients, which is accompanied by the inhibition of fibroblast proliferation and macrophage chemotaxis. Drug prediction and screening based on hub genes show that Cinobufagin and calmidazolium are expected to be candidate drugs for RM. CONCLUSION Hub genes such as DUSP1, NR4A1 and THBS1 participate in RM by regulating epithelial cell migration, fibroblast proliferation and macrophage chemotaxis, which will provide new insight for the diagnosis and targeted therapy of RM.
Collapse
Affiliation(s)
- Yijun Yang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Ai Zhao
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Ting Wang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Qi Tang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Suwan Qi
- Affiliated Women's Hospital of Jiangnan University, China
| | - Xiaoling Shi
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Fei Wang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China.
| | - Yingchun Gao
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China.
| |
Collapse
|
2
|
Huang X, Yin T, Yu M, Zhu G, Hu X, Yu H, Zhao W, Chen J, Du J, Wu Q, Zhang W, Liu L, Du M. Decidualization-associated recruitment of cytotoxic memory CD8 +T cells to the maternal-fetal interface for immune defense. Mucosal Immunol 2024:S1933-0219(24)00130-2. [PMID: 39675728 DOI: 10.1016/j.mucimm.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Decidual CD8+T (dCD8+T) cells are pivotal in the maintenance of the delicate balance between immune tolerance towards the fetus and immune resistance against pathogens. The endometrium and decidua represent the uterine environments before and during pregnancy, respectively, yet the composition and phenotypic alterations of uterine CD8+T cells in these tissues remain unclear. Using flow cytometry and analysis of transcriptome profiles, we demonstrated that human dCD8+T and endometrial CD8+T (eCD8+T) cells exhibited similar T cell differentiation statuses and phenotypes of tissue infiltrating or residency, compared to peripheral CD8+T (pCD8+T) cells. However, dCD8+T cells showed decreased expression of coinhibitory marker (PD-1), chemotaxis marker (CXCR3), and tissue-resident markers (CD69 and CD103), along with increased expression of granzyme B and granulysin, compared to eCD8+T cells. In vitro cytotoxicity assays further demonstrated that dCD8+T cells had greater effector functions than eCD8+T cells. Additionally, both in vitro and in vivo chemotaxis assays confirmed the recruitment of non-resident effector memory T cell subsets to the pregnant decidua, contributing to the dCD8+T cell-mediated anti-infection mechanism at the maternal-fetal interface. This work demonstrates dCD8+T cells replenished from the circulation retain their cytotoxic capacity, which may serve as an enhanced defense mechanism against infection during pregnancy.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Min Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Guohua Zhu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Hailin Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - Jiajia Chen
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jiangyuan Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, 200434, China.
| |
Collapse
|
3
|
Wang Y, Guo A, Yang L, Han X, Li Q, Liu J, Han Y, Yang Y, Chao L. Immune dysregulation of decidual NK cells mediated by GRIM19 downregulation contributes to the occurrence of recurrent pregnancy loss. Mol Cell Biochem 2024:10.1007/s11010-024-05181-z. [PMID: 39663335 DOI: 10.1007/s11010-024-05181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
In patients with recurrent pregnancy loss (RPL), excessive activation of decidual natural killer (dNK) cells has been widely observed, yet the precise underlying mechanisms remain to be elucidated. We collected decidual specimens from RPL patients and controls to assess GRIM19 expression, activation phenotype, cytotoxic function, inflammatory cytokine secretion, and mitochondrial homeostasis in dNK cells. Furthermore, we established a GRIM19-knockout NK-92MI cell line and a GRIM19 ± C57BL/6J mouse model to investigate the relationship between GRIM19 downregulation and dNK immune dysregulation, ultimately contributing to pregnancy loss. Decidual NK cells from RPL patients exhibited significantly lower GRIM19 expression, accompanied by abnormal hyperactivation, enhanced cytotoxicity, and abnormal mitochondrial activation. In vitro experiments confirmed that reduced GRIM19 expression significantly potentiated the cytotoxicity and pro-inflammatory cytokine secretion of NK-92MI cells, while also promoting mitochondrial homeostasis imbalance. Mouse model studies corroborated that GRIM19 downregulation triggers NK cell homeostasis imbalance, contributing to the occurrence of pregnancy loss. Downregulation of GRIM19 in dNK cells contributes to RPL through hyperactivation and disruption of mitochondrial homeostasis, emphasizing its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Anliang Guo
- Shandong University, Jinan, 250012, Shandong, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaojuan Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qianni Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jin Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yilong Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lan Chao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Zhou Z, Yang X. An update review of the application of single-cell RNA sequencing in pregnancy-related diseases. Front Endocrinol (Lausanne) 2024; 15:1415173. [PMID: 39717096 PMCID: PMC11663665 DOI: 10.3389/fendo.2024.1415173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Reproductive success hinges on the presence of a robust and functional placenta. Examining the placenta provides insight about the progression of pregnancy and valuable information about the normal developmental trajectory of the fetus. The current limitations of using bulk RNA-sequencing (RNA-seq) analysis stem from the diverse composition of the placenta, hindering a comprehensive description of how distinct trophoblast cell expression patterns contribute to the establishment and sustenance of a successful pregnancy. At present, the transcriptional landscape of intricate tissues increasingly relies on single-cell RNA sequencing (scRNA-seq). A few investigations have utilized scRNA-seq technology to examine the codes governing transcriptome regulation in cells at the maternal-fetal interface. In this review, we explore the fundamental principles of scRNA-seq technology, offering the latest overview of human placental studies utilizing this method across various gestational weeks in both normal pregnancies and pregnancy-related diseases, including recurrent pregnancy loss (RPL), preeclampsia (PE), preterm birth, and gestational diabetes mellitus (GDM). Furthermore, we discuss the limitations and future perspectives of scRNA-seq technology within the realm of reproduction. It seems that scRNA-seq stands out as one of the crucial tools for studying the etiology of pregnancy complications. The future direction of scRNA-seq applications may involve devolving into functional biology, with a primary focus on understanding variations in transcriptional activity among highly specific cell populations. Our goal is to provide obstetricians with an updated understanding of scRNA-seq technology related to pregnancy complications, providing comprehensive understandings to aid in the diagnosis and treatment of these conditions, ultimately improving maternal and fetal prognosis.
Collapse
Affiliation(s)
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Gao F, Li X, Wang H, Xu Z, Qian W, Bai G. Single-cell profiling of the peripheral blood immune landscape during mid- and late-stage pregnancy. Physiol Genomics 2024; 56:855-868. [PMID: 39555960 DOI: 10.1152/physiolgenomics.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024] Open
Abstract
We aimed to determine the peripheral blood mononuclear cell (PBMC) immune profiles of mid- and late-stage pregnant women to establish a foundation for studying pregnancy-related diseases. Peripheral blood samples were collected from three women each during mid- and late-stage pregnancy, and PBMCs were extracted for single-cell RNA sequencing (scRNA-seq). Peripheral blood samples were also collected for flow cytometry analysis to validate the analytical results. HOPX+ CD4+ T cells, ZNF683+CD8+ T cells, and KLRB1+CD8+ T cells significantly differed in quantitative ratio and gene transcript level between women at mid- and late-stage pregnancy. In late pregnancy, cell-to-cell communication was enhanced and effector CD8+ T cells highly expressed infection-related pathways. A rare T cell subtype, "XIST+ T cells," exhibited high XIST expression, a gene that may be involved in the regulation of immune-related gene transcription and translation, and insulin signaling pathway, during pregnancy. Monocytes exhibited significant proinflammatory and metabolic properties in mid- and late-stage pregnancy, respectively. Natural killer (NK) cells were mainly involved in T- and B-cell-mediated signaling pathways, and in T cell differentiation, in mid-pregnancy. Enhanced innate immunity of NK cells was observed. Moreover, NK cells expressed genes associated with diabetes-related pathways in late-stage pregnancy. To conclude, we present detailed changes in the immune response occurring in pregnant women from mid- to late-stage gestation, revealing significant differences in PBMC subtypes and molecular properties. These findings provide insights into the physiopathological mechanisms of chronic hepatitis B infection, systemic lupus erythematosus, and gestational diabetes mellitus underlying systemic immune responses during mid- and late-stage pregnancy.NEW & NOTEWORTHY There are significant differences in three subtypes of memory/effector T cells (HOPX+ CD4+ T cells, ZNF683+CD8+ T cells, and KLRB1+CD8+ T cells) between mid- and late pregnancy. In late pregnancy, intercellular interaction was enhanced and effector CD8+ T cells highly expressed infection-related pathways. A rare T cell subtype, "XIST+ T cells," may be involved in the regulation of immune-related gene transcription and translation with a strong female bias.
Collapse
Affiliation(s)
- Fan Gao
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xia Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongyan Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhen Xu
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenjun Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guiqin Bai
- Gene Joint Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Huang Y, Xie B, Li J, Hang F, Hu Q, Jin Y, Qin R, Yu J, Luo J, Liao M, Qin A. Prevalence of thyroid autoantibody positivity in women with infertility: a systematic review and meta-analysis. BMC Womens Health 2024; 24:630. [PMID: 39604908 PMCID: PMC11600930 DOI: 10.1186/s12905-024-03473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Thyroid autoimmunity (TAI) is associated with infertility and complications during pregnancy. However, the prevalence of thyroid autoantibodies in women with infertility remains unclear due to variability in study designs, sample sizes, and populations. In this meta-analysis, we aimed to assess the prevalence of thyroid autoantibodies in women with infertility compared with that in healthy controls. METHODS Systematic searches were conducted across PubMed, Embase, Web of Science, and the Cochrane Library from inception to February 5, 2024. The inclusion criteria were women with infertility and those with autoimmune thyroid antibodies. Studies in which relevant data could not be extracted, randomized control trial reports, studies with non-original or duplicate data, and non-English articles were excluded. The main outcome was prevalence rate. RESULTS The worldwide pooled prevalence of thyroid autoantibody positivity was 20%. In contrast, a significantly higher TAI prevalence was noted in the population with infertility than in healthy controls (risk ratio [RR] = 1.51). Subgroup analyses indicated that TAI prevalence was higher in patients receiving both assisted reproductive technology (ART) and non-ART treatments than in healthy controls (RR = 1.37 and 3.06, respectively). TAI prevalence was also higher in the recurrent abortion and non-recurrent abortion groups of infertility than in healthy controls (RR = 1.80 and 1.39, respectively). Additionally, a higher TAI prevalence was found in the euthyroid and non-simple euthyroid groups than in the control group (RR = 2.77 and 1.43, respectively). The prevalence was significantly higher in cases of unexplained infertility, endometriosis, ovulation disorders, and fallopian tube factors among women with infertility than among the control group (RR = 1.53, 1.83, 1.42, and 2.00, respectively). CONCLUSIONS Thyroid autoantibodies are more prevalent in patients with infertility than in healthy controls. Given the presence of thyroid autoantibodies, screening patients with infertility is clinically important.
Collapse
Affiliation(s)
- Yingqin Huang
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
- Reproductive Medicine Center, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Baoli Xie
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Jiaxu Li
- Reproductive Medicine Center, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Fu Hang
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Qianwen Hu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Yufu Jin
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Rongyan Qin
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Jiaxin Yu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Jianxin Luo
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China
| | - Ming Liao
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China.
| | - Aiping Qin
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Wen X, Dong P, Liu J, Wang SJ, Li J. Role of Immune Inflammation in Recurrent Spontaneous Abortions. J Inflamm Res 2024; 17:9407-9422. [PMID: 39600677 PMCID: PMC11590633 DOI: 10.2147/jir.s488638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study aimed to investigate the role of immune inflammation in recurrent spontaneous abortions (RSA). Methods In this study, decidua tissues from 12 patients were collected. These included six individuals with RSA in the RSA group and six in the control group. The differences in gene and metabolite expression in the decidua of the placenta between normal pregnancies and patients with RSA were compared using transcriptomic and metabolomic analyses. The differentially expressed genes and metabolites were further analyzed through functional enrichment analysis using high-throughput sequencing technology. Results There was a significant upregulation of genes associated with immunity and inflammation in the RSA group compared to the control group. The TNF signaling pathway was upregulated in the RSA group. Inflammatory mediators were expressed at higher levels in the RSA group, and arachidonic acid metabolism was the most significant differential metabolite set. The regulation of inflammatory mediators of transient receptor potential (TRP) channels were enriched in RSA cases. The integrated analysis of the data further suggests that the immune-inflammatory response might be an important factor in RSA. The expression levels of genes related to inflammation and hypoxia in tissues from patients with RSA were verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and this revealed that the expression of MARK10 and TNFAIP3 genes was significantly upregulated in samples from RSA patients compared to normal tissues. Conclusion The findings suggest a strong association between immune-related inflammation and RSA. Addressing metabolic and inflammatory aspects in patients with RSA may potentially help enhance pregnancy outcomes.
Collapse
Affiliation(s)
- Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Peng Dong
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jia Liu
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Shi-Jun Wang
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jian Li
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Department of Family Planning, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Yang L, Yang D, Cai S, Wang Y, Wang L, Li Y, Li L, Yin T, Diao L. Understanding the heterogeneity of natural killer cells at the maternal-fetal interface: implications for pregnancy health and disease. Mol Hum Reprod 2024; 30:gaae040. [PMID: 39570646 DOI: 10.1093/molehr/gaae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Natural killer (NK) cells are the most abundant leukocytes located at the maternal-fetal interface; they respond to pregnancy-related hormones and play a pivotal role in maintaining the homeostatic micro-environment during pregnancy. However, due to the high heterogeneity of NK cell subsets, their categorization has been controversial. Here, we review previous studies on uterine NK cell subsets, including the classic categorization based on surface markers, functional molecules, and developmental stages, as well as single-cell RNA sequencing-based clustering approaches. In addition, we summarize the potential pathways by which endometrial NK cells differentiate into decidual NK (dNK) cells, as well as the differentiation pathways of various dNK subsets. Finally, we compared the alterations in the NK cell subsets in various pregnancy-associated diseases, emphasizing the possible contribution of specific subsets to the development of the disease.
Collapse
Affiliation(s)
- Yuying Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liangtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Dongyong Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yanjun Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, China
| |
Collapse
|
9
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Yang L, Su Y, Cai S, Ma H, Yang J, Xu M, Li Y, Huang C, Zeng Y, Li Q, Feng M, Li H, Diao L. Regional Analysis of the Immune Microenvironment in Human Endometrium. Am J Reprod Immunol 2024; 92:e13921. [PMID: 39225584 DOI: 10.1111/aji.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
PROBLEM Endometrial immune cells are essential for maintaining homeostasis and the endometrial receptivity to embryo implantation. Understanding regional variations in endometrial immune cell populations is crucial for comprehending normal endometrial function and the pathophysiology of endometrial disorders. Despite previous studies focusing on the overall immune cell composition and function in the endometrium, regional variations in premenopausal women remain unclear. METHOD OF STUDY Endometrial biopsies were obtained from four regions (anterior, posterior, left lateral, and right lateral) of premenopausal women undergoing hysteroscopy with no abnormalities. A 15-color human endometrial immune cell-focused flow cytometry panel was used for analysis. High-dimensional flow cytometry combined with a clustering algorithm was employed to unravel the complexity of endometrial immune cells. Additionally, multiplex immunofluorescent was performed for further validation. RESULTS Our findings revealed no significant variation in the distribution and abundance of immune cells across different regions under normal conditions during the proliferative phase. Each region harbored similar immune cell subtypes, indicating a consistent immune microenvironment. However, when comparing normal regions to areas with focal hemorrhage, significant differences were observed. An increase in CD8+ T cells highlights the impact of localized abnormalities on the immune microenvironment. CONCLUSIONS Our study demonstrates that the endometrial immune cell landscape is consistent across different anatomical regions during the proliferative phase in premenopausal women. This finding has important implications for understanding normal endometrial function and the pathophysiology of endometrial disorders.
Collapse
Affiliation(s)
- Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yiyi Su
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Huan Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Yang
- Department of Hematology, National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjuan Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Qiyuan Li
- Department of Hematology, National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanjie Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| |
Collapse
|
11
|
Guan D, Sun W, Gao M, Chen Z, Ma X. Immunologic insights in recurrent spontaneous abortion: Molecular mechanisms and therapeutic interventions. Biomed Pharmacother 2024; 177:117082. [PMID: 38972152 DOI: 10.1016/j.biopha.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Recurrent spontaneous abortion refers to the occurrence of two or more spontaneous abortions before or during the early stages of pregnancy. The immune system plays a crucial role in the maintenance of pregnancy and embryo implantation. Various immune cells, cytokines, and immune regulatory pathways are involved in the complex immune balance required for a stable pregnancy. Studies suggest that immune abnormalities may be associated with some recurrent spontaneous abortion cases, particularly those involving the dysregulation of immune cell function, autoimmune responses, and placental immunity. In terms of treatment, interventions targeting immune mechanisms are crucial. Various therapeutic approaches, including immunomodulatory drugs, immunoadsorption therapies, and immunocellular therapies, are continually being researched and developed. These approaches aim to restore the immune balance, enhance the success rate of pregnancies, and provide more effective treatment options for patients with recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Wenjie Sun
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| |
Collapse
|
12
|
Lodge-Tulloch NA, Paré JF, Couture C, Bernier E, Cotechini T, Girard S, Graham CH. Maternal Innate Immune Reprogramming After Complicated Pregnancy. Am J Reprod Immunol 2024; 92:e13908. [PMID: 39119763 DOI: 10.1111/aji.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
PROBLEM Preeclampsia (PE) and fetal growth restriction (FGR) are often associated with maternal inflammation and an increased risk of cardiovascular and metabolic disease in the affected mothers. The mechanism responsible for this increased risk of subsequent disease may involve reprogramming of innate immune cells, characterized by epigenetic modifications. METHOD OF STUDY Circulating monocytes from women with PE, FGR, or uncomplicated pregnancies (control) were isolated before labor. Cytokine release from monocytes following exposure to lipopolysaccharide (LPS) and the presence of lysine 4-trimethylated histone 3 (H3K4me3) within TNF promoter sequences were evaluated. Single-cell transcriptomic profiles of circulating monocytes from women with PE or uncomplicated pregnancies were assessed. RESULTS Monocytes from women with PE or FGR exhibited increased IL-10 secretion and decreased IL-1β and GM-CSF secretion in response to LPS. While TNFα secretion was not significantly different in cultures of control monocytes versus those from complicated pregnancies with or without LPS exposure, monocytes from complicated pregnancies had significantly decreased levels of H3K4me3 associated with TNF promoter sequences. Cluster quantification and pathway analysis of differentially expressed genes revealed an increased proportion of anti-inflammatory myeloid cells and a lower proportion of inflammatory non-classical monocytes among the circulating monocyte population in women with PE. CONCLUSIONS Monocytes from women with PE and FGR exhibit an immune tolerance phenotype before initiation of labor. Further investigation is required to determine whether this tolerogenic phenotype persists after the affected pregnancy and contributes to increased risk of subsequent disease.
Collapse
Affiliation(s)
| | - Jean-François Paré
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Camille Couture
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Elsa Bernier
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Jin B, Ding X, Dai J, Peng C, Zhu C, Wei Q, Chen X, Qiang R, Ding X, Du H, Deng W, Yang X. Deciphering decidual deficiencies in recurrent spontaneous abortion and the therapeutic potential of mesenchymal stem cells at single-cell resolution. Stem Cell Res Ther 2024; 15:228. [PMID: 39075579 PMCID: PMC11287859 DOI: 10.1186/s13287-024-03854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a challenging condition that affects the health of women both physically and mentally, but its pathogenesis and treatment have yet to be studied in detail. In recent years, Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to be effective in treating various diseases. Current understanding of RSA treatment using WJ-MSCs is limited, and the exact mechanisms of WJ-MSCs action in RSA remains largely unclear. In this study, we explored the decidual deficiencies in RSA and the therapeutic potential of WJ-MSCs at single-cell resolution. METHODS Three mouse models were established: a normal pregnancy group, an RSA group, and a WJ-MSC treatment group. Decidual tissue samples were collected for single-cell RNA sequencing (scRNA-seq) and functional verification, including single-cell resolution in situ hybridization on tissues (SCRINSHOT) and immunofluorescence. RESULTS We generated a single-cell atlas of decidual tissues from normal pregnant, RSA, and WJ-MSC-treated mice and identified 14 cell clusters in the decidua on day 14. Among these cell populations, stromal cells were the most abundant cell clusters in the decidua, and we further identified three novel subclusters (Str_0, Str_1, and Str_2). We also demonstrated that the IL17 and TNF signaling pathways were enriched for upregulated DEGs of stromal cells in RSA mice. Intriguingly, cell-cell communication analysis revealed that Str_1 cell-related gene expression was greatly reduced in the RSA group and rescued in the WJ-MSC treatment group. Notably, the interaction between NK cells and other cells in the RSA group was attenuated, and the expression of Spp1 (identified as an endometrial toleration-related marker) was significantly reduced in the NK cells of the RSA group but could be restored by WJ-MSC treatment. CONCLUSION Herein, we implemented scRNA-seq to systematically evaluate the cellular heterogeneity and transcriptional regulatory networks associated with RSA and its treatment with WJ-MSCs. These data revealed potential therapeutic targets of WJ-MSCs to remodel the decidual subpopulations in RSA and provided new insights into decidua-derived developmental defects at the maternal-foetal interface.
Collapse
Affiliation(s)
- Beibei Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Xiaoying Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Jiamin Dai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Chen Peng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chunyu Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Qinru Wei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Xinyi Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Ronghui Qiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyi Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Hongxiang Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
14
|
Xu G, Pan T, Li S, Guo J, Zhang Y, Xu Q, Chen R, Ma Y, Li Y. Mapping Single-Cell Transcriptomes of Endometrium Reveals Potential Biomarkers in Endometrial Cancer. Immunotargets Ther 2024; 13:349-366. [PMID: 39050484 PMCID: PMC11268782 DOI: 10.2147/itt.s470994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background The heterogeneity and dynamic changes of endometrial cells have a significant impact on health as they determine the normal function of the endometrium during the menstrual cycle. Dysfunction of the endometrium can lead to the occurrence of various gynecological diseases. Therefore, deconvolution of immune microenvironment that drives transcriptional programs throughout the menstrual cycle is key to understand regulatory biology of endometrium. Methods Herein, we comprehensively analyzed single-cell transcriptome of 59,397 cells across ten human endometrium samples and revealed the dynamic cellular heterogeneity throughout the menstrual cycle. Results We identified two perivascular cell subtypes, four epithelial subtypes and four fibroblast cell types in endometrium. Moreover, we inferred the cell type-specific transcription factor (TF) activities and linked critical TFs to transcriptional output of diverse immune cell types, highlighting the importance of transcriptional regulation in endometrium. Dynamic interactions between various types of cells in endometrium contribute to a range of biological pathways regulating differentiation of secretory. Integration of the molecular biomarkers identified in endometrium and bulk transcriptome of 535 endometrial cancers (EC), we revealed five RNA-based molecular subtypes of EC with highly intratumoral heterogeneity and different clinical manifestations. Mechanism analysis uncovered clinically relevant pathways for pathogenesis of EC. Conclusion In summary, our results revealed the dynamic immune microenvironment of endometrium and provided novel insights into future development of RNA-based treatments for endometriosis and endometrial carcinoma.
Collapse
Affiliation(s)
- Gang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China, Harbin, 150081, People’s Republic of China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Si Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Jing Guo
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Ya Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Renwei Chen
- Hainan Women and Children’s Medical Center, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, National Center for International Research, The First Affiliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
15
|
Derisoud E, Jiang H, Zhao A, Chavatte-Palmer P, Deng Q. Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies. Hum Reprod Update 2024; 30:410-441. [PMID: 38478759 PMCID: PMC11215163 DOI: 10.1093/humupd/dmae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/12/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types. OBJECTIVE AND RATIONALE We aim to review the knowledge regarding placental structure and function gained from the use of single-cell RNA sequencing (scRNAseq), followed by comparing cell-type-specific genes, highlighting their similarities and differences. Moreover, we intend to identify consensus marker genes for the various trophoblast cell types across studies. Finally, we will discuss the contributions and potential applications of scRNAseq in studying pregnancy-related diseases. SEARCH METHODS We conducted a comprehensive systematic literature review to identify different cell types and their functions at the human maternal-fetal interface, focusing on all original scRNAseq studies on placentas published before March 2023 and published reviews (total of 28 studies identified) using PubMed search. Our approach involved curating cell types and subtypes that had previously been defined using scRNAseq and comparing the genes used as markers or identified as potential new markers. Next, we reanalyzed expression matrices from the six available scRNAseq raw datasets with cell annotations (four from first trimester and two at term), using Wilcoxon rank-sum tests to compare gene expression among studies and annotate trophoblast cell markers in both first trimester and term placentas. Furthermore, we integrated scRNAseq raw data available from 18 healthy first trimester and nine term placentas, and performed clustering and differential gene expression analysis. We further compared markers obtained with the analysis of annotated and raw datasets with the literature to obtain a common signature gene list for major placental cell types. OUTCOMES Variations in the sampling site, gestational age, fetal sex, and subsequent sequencing and analysis methods were observed between the studies. Although their proportions varied, the three trophoblast types were consistently identified across all scRNAseq studies, unlike other non-trophoblast cell types. Notably, no marker genes were shared by all studies for any of the investigated cell types. Moreover, most of the newly defined markers in one study were not observed in other studies. These discrepancies were confirmed by our analysis on trophoblast cell types, where hundreds of potential marker genes were identified in each study but with little overlap across studies. From 35 461 and 23 378 cells of high quality in the first trimester and term placentas, respectively, we obtained major placental cell types, including perivascular cells that previously had not been identified in the first trimester. Importantly, our meta-analysis provides marker genes for major placental cell types based on our extensive curation. WIDER IMPLICATIONS This review and meta-analysis emphasizes the need for establishing a consensus for annotating placental cell types from scRNAseq data. The marker genes identified here can be deployed for defining human placental cell types, thereby facilitating and improving the reproducibility of trophoblast cell annotation.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Pascale Chavatte-Palmer
- INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
16
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Yu H, Hu X, Huang X, Yin T, Liu L, Yue C, Du M. Causal Relationship Between Circulating Immune Cells and Recurrent Spontaneous Abortion: A Bidirectional Mendelian Randomization Study. Am J Reprod Immunol 2024; 91:e13888. [PMID: 38923068 DOI: 10.1111/aji.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a serious and common complication of pregnancy caused by multiple factors. The etiology remains incompletely understood, but immunologic factors play important roles. Here, we aimed to evaluate whether circulating immune cells causally impacted RSA. METHODS In this study, we conducted a comprehensive two-sample Mendelian randomization (MR) study to determine the causal association between the 731 immunophenotypes of human peripheral blood lymphocytes and the number of spontaneous abortions as well as recurrent miscarriage. Sensitivity analyses were performed to assess and minimize heterogeneity and horizontal pleiotropy. Reverse MR analysis was used to assess reverse causality. RESULTS After Bonferroni-correction, eight immunophenotypes were significantly associated with the number of spontaneous abortions: FSC-A on CD4+ T cell (beta = -0.051, 95% CI = [-0.085, -0.017], P-value = 0.004), CD8 on HLA DR+ CD8+ T cell (beta = -0.040, 95% CI = [-0.067, -0.014], P-value = 0.003), HLA DR on CD33dim HLA DR+ CD11b- (beta = -0.021, 95% CI = [-0.036, -0.005], P-value = 0.010), HLA DR+ T cell Absolute Count (beta = 0.022, 95% CI = [0.006, 0.037], P-value = 0.008), HLA DR+ T cell % lymphocyte (beta = 0.026, 95% CI = [0.010, 0.041], P-value = 0.001), HLA DR+ T cell % T cell (beta = 0.023, 95% CI = [0.007, 0.039], P-value = 0.004), HLA DR+ CD4+ T cell % lymphocyte (beta = 0.034, 95% CI = [0.007, 0.060], P-value = 0.012), and HLA DR on B cell (beta = 0.012, 95% CI = [0.003, 0.021], P-value = 0.010). In addition, we identified two immunophenotypes associated with recurrent miscarriage: HLA DR on B cell (OR = 0.854, 95% CI = [0.757, 0.964], P-value = 0.011), and CD19 on naive-mature B cell (OR = 4.595, 95% CI = [1.674, 12.617], P-value = 0.003). There was no evidence of heterogeneity, horizontal pleiotropy and reverse causality. CONCLUSIONS Our study demonstrated a tight link between adaptive immune cells and RSA through genetic means, thus providing potential therapeutic targets or novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Hailin Yu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xianyang Hu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xixi Huang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Tingxuan Yin
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Chaoyan Yue
- Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| |
Collapse
|
18
|
Jia W, Ma L, Yu X, Wang F, Yang Q, Wang X, Fan M, Gu Y, Meng R, Wang J, Li Y, Li R, Shao X, Wang YL. Human CD56 +CD39 + dNK cells support fetal survival through controlling trophoblastic cell fate: immune mechanisms of recurrent early pregnancy loss. Natl Sci Rev 2024; 11:nwae142. [PMID: 38966071 PMCID: PMC11223582 DOI: 10.1093/nsr/nwae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/06/2024] Open
Abstract
Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.
Collapse
Affiliation(s)
- Wentong Jia
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyang Ma
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiaoye Wang
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Mengjie Fan
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yan Gu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ran Meng
- Department of Prenatal Screening, Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yuxia Li
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
19
|
Ou M, Luo L, Yang Y, Yan N, Yan X, Zhong X, Cheong Y, Li T, Ouyang J, Wang Q. Decrease in peripheral natural killer cell level during early pregnancy predicts live birth among women with unexplained recurrent pregnancy loss: a prospective cohort study. Am J Obstet Gynecol 2024; 230:675.e1-675.e13. [PMID: 37914060 DOI: 10.1016/j.ajog.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Previous studies have suggested that trophoblast cells inhibit the proliferation of peripheral natural killer cells and that the level of peripheral natural killer cells decrease in the middle and late pregnancy stage among healthy women. The change in peripheral natural killer cell level during early pregnancy and the relationship between the change in peripheral natural killer cell level and pregnancy outcomes among women with unexplained recurrent pregnancy loss have not been sufficiently explored. OBJECTIVE This study aimed to characterize the level of prepregnancy peripheral natural killer cells in comparison with those in early pregnancy among women with unexplained recurrent pregnancy loss and to determine if the change in the level of peripheral natural killer cells from prepregnancy to early pregnancy can predict pregnancy outcomes. STUDY DESIGN In this prospective cohort study, 1758 women with recurrent pregnancy loss were recruited between January 2017 and December 2021 among whom 252 women with unexplained recurrent pregnancy loss had prepregnancy and early pregnancy (4-6 weeks gestation) peripheral natural killer cell measurements. These 252 women were divided into 2 groups, namely those with a lower gestational peripheral natural killer cell level (group 1) when compared with prepregnancy levels and those who did not (group 2). The respective outcomes of these groups in terms of live birth and pregnancy loss were comparatively analyzed using chi-square and Student's t tests. Candidate factors that could influence live birth were selected using the Akaike information criterion. The participates were then randomly divided into training and testing groups. A multivariable logistic regression analysis was performed and a nomogram was created to assess the possibility of live birth. The predictive accuracy was determined by the area under the receiver operating characteristic curve and validated by plotting the predicted probabilities and the observed probabilities. A Hosmer-Lemeshow test was used to assess the goodness of fit. RESULTS When early gestational peripheral natural killer cell levels were compared with prepregnancy peripheral natural killer cell levels, 61.5% (154) of women had a comparatively lower early-gestational peripheral natural killer cell level and 38.9% (98) of women had an increase or no change in the peripheral natural killer cell level. The live birth rate in group 1 was 89.0% (137/154), which was significantly higher than the rate of 49.0% (48/98) in group 2 (P<.001). A decrease in the peripheral natural killer cell level (odds ratio, 1.36; 95% confidence interval, 1.22-1.55; P<.001) and the anti-Muellerian hormone level (odds ratio, 1.41; 95% confidence interval, 1.14-1.81; P=.003) were important predicting factors for a higher live birth rate. Female body mass index (odds ratio, 0.97; 95% confidence interval, 0.82-1.15; P=.763) and parity (odds ratio, 1.61; 95% confidence interval, 0.71-4.12; P=.287) also were predicting factors. Furthermore, the area under the receiver operating characteristic curve of the model to diagnose of live birth was 0.853 with a sensitivity of 81.6% and a specificity of 78.0% using the training data set. And the Hosmer-Lemeshow test showed that the model was a good fit (p=6.068). CONCLUSION We report a comparative decrease in the peripheral natural killer cell levels in early gestation when compared with prepregnancy cell levels in more than 60% of women with unexplained recurrent pregnancy loss at 4 to 6 weeks of gestation. When compared with prepregnancy peripheral natural killer cell levels, a decrease in the peripheral natural killer cell level during early pregnancy might be a useful predictor of the live birth rate among women with unexplained recurrent pregnancy loss.
Collapse
Affiliation(s)
- Miaoxian Ou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Lu Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yuxin Yang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Niwei Yan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Xi Yan
- Human Development and Health, Faculty of Medicine, Southampton, United Kingdom
| | - Xue Zhong
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Ying Cheong
- Human Development and Health, Faculty of Medicine, Southampton, United Kingdom; Complete Fertility, Southampton, United Kingdom
| | - Tinchiu Li
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Hong Kong, China
| | - Juan Ouyang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Qiong Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Huang D, Ran Y, Chen R, He J, Yin N, Qi H. Identification of circRNA Expression Profile and Potential Systemic Immune Imbalance Modulation in Premature Rupture of Membranes. Anal Cell Pathol (Amst) 2024; 2024:6724914. [PMID: 38803428 PMCID: PMC11129912 DOI: 10.1155/2024/6724914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Premature rupture of membrane (PROM) refers to the rupture of membranes before the onset of labor which increases the risk of perinatal morbidity and mortality. Recently, circular RNAs (circRNAs) have emerged as promising regulators of diverse diseases. However, the circRNA expression profiles and potential circRNA-miRNA-mRNA regulatory mechanisms in PROM remain enigmatic. In this study, we displayed the expression profiles of circRNAs and mRNAs in plasma and fetal membranes of PROM and normal control (NC) groups based on circRNA microarray, the Gene Expression Omnibus database, and NCBI's Sequence Read Archive. A total of 1,459 differentially expressed circRNAs (DECs) in PROM were identified, with 406 upregulated and 1,053 downregulated. Then, we constructed the circRNA-miRNA-mRNA network in PROM, encompassing 22 circRNA-miRNA pairs and 128 miRNA-mRNA pairs. Based on the analysis of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene set enrichment analysis (GSEA), DECs were implicated in immune-related pathways, with certain alterations persisting even postpartum. Notably, 11 host genes shared by DECs of fetal membrane tissue and prenatal plasma in PROM were significantly implicated in inflammatory processes and extracellular matrix regulation. Our results suggest that structurally stable circRNAs may predispose to PROM by mediating systemic immune imbalances, including peripheral leukocyte disorganization, local immune imbalance at the maternal-fetal interface, and local collagen disruption. This is the first time to decipher a landscape on circRNAs of PROM, reveals the pathogenic cause of PROM from the perspective of circRNA, and opens up a new direction for the diagnosis and treatment of PROM.
Collapse
Affiliation(s)
- Dongni Huang
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jie He
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
22
|
Li Q, Zhang L, Zou H, Chai T, Su Y, Shen Y, He X, Qi H, Li C. Multi-omics reveals the switch role of abnormal methylation in the regulation of decidual macrophages function in recurrent spontaneous abortion. Cell Signal 2024; 117:111071. [PMID: 38295895 DOI: 10.1016/j.cellsig.2024.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
RSA, recurrent spontaneous abortion, often causes serious physical damage and psychological pressure in reproductive women with unclarified pathogenesis. Abnormal function of decidual cells and aberrant DNA methylation have been reported to cause RSA, but their association remains unclear. Here, we integrated transcriptome, DNA methylome, and scRNA-seq to clarify the regulatory relationship between DNA methylation and decidual cells in RSA. We found that DNA methylation mainly influenced the function of decidual macrophages (DMs), of which four hub genes, HLA-A, HLA-F, SQSTM1/P62, and Interferon regulatory factor 7 (IRF7), related to 22 hypomethylated CpG sites, regulated 16 hub pathways to participate in RSA pathogenesis. In particular, using transcription factor analysis, it is suggested that the upregulation of IRF7 transcription was associated with enhanced recruitment of the transcription factor STAT1 by the hypomethylated promoter region of IRF7. As the current research on DNA methylation of macrophages in the uterine microenvironment of RSA is still blank, our systematic picture of abnormal DNA methylation in regulating DM function provides new insights into the role of DNA methylation in RSA occurrence, which may aid in further prevention and treatment of RSA.
Collapse
Affiliation(s)
- Qian Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lei Zhang
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Hua Zou
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Tingjia Chai
- Department of Endocrine Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Su
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yan Shen
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiao He
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, China.
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
23
|
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S, Wang X. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal 2024; 22:230. [PMID: 38627796 PMCID: PMC11022359 DOI: 10.1186/s12964-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.
Collapse
Affiliation(s)
- Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiaqin Mao
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huijun Sun
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xueyan Lu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Xiaohong Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
24
|
Lu C, Gao R, Qing P, Zeng X, Liao X, Cheng M, Qin L, Liu Y. Single-cell transcriptome analyses reveal disturbed decidual homoeostasis in obstetric antiphospholipid syndrome. Ann Rheum Dis 2024; 83:624-637. [PMID: 38331588 DOI: 10.1136/ard-2023-224930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 02/10/2024]
Abstract
OBJECTIVES Obstetric antiphospholipid syndrome (OAPS) is an autoimmune disease characterised by the presence of antiphospholipid antibodies in circulation and pathological pregnancy. However, the pathogenesis of OAPS remains unknown. We aimed to reveal cellular compositions and molecular features of decidual cells involved in the development of OAPS using single-cell RNA sequencing (scRNA-seq). METHODS We performed unbiased scRNA-seq analysis on the first-trimester decidua from five OAPS patients and five healthy controls (HCs), followed by validations with flow cytometry, immunohistochemical staining and immunofluorescence in a larger cohort. Serum chemokines and cytokines were measured by using ELISA. RESULTS A higher ratio of macrophages but a lower ratio of decidual natural killer (dNK) cells was found in decidua from OAPS compared with HCs. Vascular endothelial cells shrinked in OAPS decidua while having upregulated chemokine expression and conspicuous responses to IFN-γ and TNF-α. Macrophages in OAPS had stronger phagocytosis function, complement activation signals and relied more on glycolysis. dNK cells were more activated in OAPS and had enhanced cytotoxicity and IFN-γ production. Downregulation of granules in OAPS dNK cells could be associated with suppressed glycolysis. Moreover, stromal cells had a prosenescent state with weakened immune surveillance for senescent cells in OAPS. In addition, the cellular interactions between decidual immune cells and those of immune cells with non-immune cells under disease state were altered, especially through chemokines, IFN-γ and TNF-α. CONCLUSION This study provided a comprehensive decidual cell landscape and identified aberrant decidual microenvironment in OAPS, providing some potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Rui Gao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Zeng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of the Central Operating Unit, West China Second University Hospital, Sichuan University/West China School of Nursing, Chengdu, Sichuan, China
| | - Meng Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lang Qin
- Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Chen W, Mi C, Zhang Y, Yang Y, Huang W, Xu Z, Zhao J, Wang R, Wang M, Wan S, Wang X, Zhang H. Defective Homologous Recombination Repair By Up-Regulating Lnc-HZ10/Ahr Loop in Human Trophoblast Cells Induced Miscarriage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2207435. [PMID: 38286681 PMCID: PMC10987163 DOI: 10.1002/advs.202207435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/27/2023] [Indexed: 01/31/2024]
Abstract
Human trophoblast cells are crucial for healthy pregnancy. However, whether the defective homologous recombination (HR) repair of dsDNA break (DSB) in trophoblast cells may induce miscarriage is completely unknown. Moreover, the abundance of BRCA1 (a crucial protein for HR repair), its recruitment to DSB foci, and its epigenetic regulatory mechanisms, are also fully unexplored. In this work, it is identified that a novel lnc-HZ10, which is highly experssed in villous tissues of recurrent miscarriage (RM) vs their healthy control group, suppresses HR repair of DSB in trophoblast cell. Lnc-HZ10 and AhR (aryl hydrocarbon receptor) form a positive feedback loop. AhR acts as a transcription factor to promote lnc-HZ10 transcription. Meanwhile, lnc-HZ10 also increases AhR levels by suppressing its CUL4B-mediated ubiquitination degradation. Subsequently, AhR suppresses BRCA1 transcription; and lnc-HZ10 (mainly 1-447 nt) interacts with γ-H2AX; and thus, impairs its interactions with BRCA1. BPDE exposure may trigger this loop to suppress HR repair in trophoblast cells, possibly inducing miscarriage. Knockdown of murine Ahr efficiently recovers HR repair in placental tissues and alleviates miscarriage in a mouse miscarriage model. Therefore, it is suggested that AhR/lnc-HZ10/BRCA1 axis may be a promising target for alleviation of unexplained miscarriage.
Collapse
Affiliation(s)
- Weina Chen
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
- Key Laboratory of Environment and Female Reproductive HealthWest China School of Public Health & West China Fourth HospitalSichuan UniversityChengdu610041China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Yang Yang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Rong Wang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Manli Wang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Shukun Wan
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive HealthThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| |
Collapse
|
26
|
Mani S, Garifallou J, Kim SJ, Simoni MK, Huh DD, Gordon SM, Mainigi M. Uterine macrophages and NK cells exhibit population and gene-level changes after implantation but maintain pro-invasive properties. Front Immunol 2024; 15:1364036. [PMID: 38566989 PMCID: PMC10985329 DOI: 10.3389/fimmu.2024.1364036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. Methods With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. Results We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. Conclusions This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.
Collapse
Affiliation(s)
- Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Se-jeong Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K. Simoni
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- National Science Foundation (NSF) Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Yin T, Li X, Li Y, Zang X, Liu L, Du M. Macrophage plasticity and function in cancer and pregnancy. Front Immunol 2024; 14:1333549. [PMID: 38274812 PMCID: PMC10808357 DOI: 10.3389/fimmu.2023.1333549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.
Collapse
Affiliation(s)
- Tingxuan Yin
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinyi Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lu Liu
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
28
|
Ji K, Zhong J, Cui L, Wang X, Chen LN, Wen B, Yang F, Deng W, Pan X, Wang L, Bao J, Chen Y, Liu H. Exploring myometrial microenvironment changes at the single-cell level from nonpregnant to term pregnant states. Physiol Genomics 2024; 56:32-47. [PMID: 37955337 PMCID: PMC11281821 DOI: 10.1152/physiolgenomics.00067.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023] Open
Abstract
The microenvironment and cell populations within the myometrium play crucial roles in maintaining uterine structural integrity and protecting the fetus during pregnancy. However, the specific changes occurring at the single-cell level in the human myometrium between nonpregnant (NP) and term pregnant (TP) states remain unexplored. In this study, we used single-cell RNA sequencing (scRNA-Seq) and spatial transcriptomics (ST) to construct a transcriptomic atlas of individual cells in the myometrium of NP and TP women. Integrated analysis of scRNA-Seq and ST data revealed spatially distinct transcriptional characteristics and examined cell-to-cell communication patterns based on ligand-receptor interactions. We identified and categorized 87,845 high-quality individual cells into 12 populations from scRNA-Seq data of 12 human myometrium tissues. Our findings demonstrated alterations in the proportions of five subpopulations of smooth muscle cells in TP. Moreover, an increase in monocytic cells, particularly M2 macrophages, was observed in TP myometrium samples, suggesting their involvement in the anti-inflammatory response. This study provides unprecedented single-cell resolution of the NP and TP myometrium, offering new insights into myometrial remodeling during pregnancy.NEW & NOTEWORTHY Using single-cell RNA sequencing and spatial transcriptomics, the myometrium was examined at the single-cell level during pregnancy. We identified spatially distinct cell populations and observed alterations in smooth muscle cells and increased M2 macrophages in term pregnant women. These findings offer unprecedented insights into myometrial remodeling and the anti-inflammatory response during pregnancy. The study advances our understanding of pregnancy-related myometrial changes.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Junmin Zhong
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Long Cui
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Li-Na Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fan Yang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenfeng Deng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - YunShan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Ichikawa T, Toyoshima M, Watanabe T, Negishi Y, Kuwabara Y, Takeshita T, Suzuki S. Associations of Nutrients and Dietary Preferences with Recurrent Pregnancy Loss and Infertility. J NIPPON MED SCH 2024; 91:254-260. [PMID: 38972737 DOI: 10.1272/jnms.jnms.2024_91-313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This review examines associations of nutrients and dietary preferences with recurrent pregnancy loss (RPL), miscarriage, and infertility. Research articles, reviews, and meta-analyses of RPL and infertility that focused on nutrition, meals, and lifestyle were reviewed, and associations of nutrients and dietary preferences with pregnancy are discussed in relation to recent research findings. Studies related to RPL were given the highest priority, followed by those dealing with miscarriage and infertility. Multivitamin supplements-even when lacking folic acid or vitamin A-reduced total fetal loss. High-dose folic acid supplementation before conception reduced the risk of miscarriage and stillbirth. A meta-analysis revealed a strong association of vitamin D deficiency/insufficiency with miscarriage. Another meta-analysis revealed that seafood and dairy products reduced the risk of miscarriage, whereas a caffeine intake of 300 mg/day or more was associated with miscarriage. A balanced diet that included nutrients with antioxidant properties helped prevent miscarriage, whereas a diet that included processed foods and nutrients with proinflammatory effects increased the risk of miscarriage. Associations of nutrients with RPL warrant further research.
Collapse
Affiliation(s)
- Tomoko Ichikawa
- Department of Obstetrics and Gynecology, Nippon Medical School
| | | | - Takami Watanabe
- Department of Obstetrics and Gynecology, Nippon Medical School
| | - Yasuyuki Negishi
- Department of Obstetrics and Gynecology, Nippon Medical School
- Department of Microbiology and Immunology, Nippon Medical School
| | | | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School
- Takeshita Ladies Clinic
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School
| |
Collapse
|
30
|
Chen C, Wen Q, Deng F, Li R, Wang Y, Zhen X, Hang J. Endometrial protein expression and phosphorylation landscape decipher aberrant insulin and mTOR signalling in patients with recurrent pregnancy loss. Reprod Biomed Online 2024; 48:103585. [PMID: 38016376 DOI: 10.1016/j.rbmo.2023.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
RESEARCH QUESTION What are the proteomic and phosphoproteomic differences between the endometrium of women with recurrent pregnancy loss (RPL) and the endometrium of healthy control women during the proliferative and secretory phases of the menstrual cycle? DESIGN In total, 54 endometrial samples were collected during the proliferative and secretory phases from women with RPL (n = 28) and healthy controls (n = 26). Comprehensive proteomic and phosphoproteomic analyses were conducted using label-free liquid chromatography-tandem mass spectrometry (n = 44), and verified through Western blotting (n = 10). Three comparison groups were established: total RPL endometrium versus total control endometrium; RPL proliferative endometrium versus control proliferative endometrium; and RPL secretory endometrium versus control secretory endometrium. RESULTS Differentially expressed proteins and differentially phosphorylated proteins were identified in the three comparison groups. Combining pathway enrichment, network analysis and soft clustering analysis, the insulin/cyclic nucleotide signalling pathway and AMPK/mTOR signalling pathway were identified as the major contributors to the aberration of RPL endometrium. Western blotting verified altered expression of four proteins: cAMP-dependent protein kinase type I-β regulatory subunit, adenylate cyclase type 3, 5'-AMP-activated protein kinase catalytic subunit α-2 and phosphatidate phosphatase LPIN2. CONCLUSIONS This exploratory study provides insights into the differentiated protein expression and phosphorylation profiles of the endometrium of women with RPL in both the proliferative and sectretory phases of the menstrual cycle. The results highlight potential proteins associated with the pathogenesis of RPL that may serve as potential indicators for RPL. The findings contribute to the identification of potential targets for RPL treatment as well as its pathogenesis.
Collapse
Affiliation(s)
- Chao Chen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qi Wen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Feng Deng
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ying Wang
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| | - Jing Hang
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
31
|
游 芳, 罗 靓, 刘 香, 张 学, 李 春. [Analysis of pregnancy outcomes, disease progression, and risk factors in patients with undifferentiated connective tissue disease]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2023; 55:1045-1052. [PMID: 38101787 PMCID: PMC10724001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To investigate the fetal and maternal outcomes, risk factors of disease progression and adverse pregnancy outcomes (APOs) in patients with undifferentiated connective tissue disease (UCTD). METHODS This retrospective study described the outcomes of 106 pregnancies in patients with UCTD. The patients were divided into APOs group (n=53) and non-APOs group (n=53). The APOs were defined as miscarriage, premature birth, pre-eclampsia, premature rupture of membranes (PROM), intrauterine growth restriction (IUGR), postpartum hemorrhage (PPH), and stillbirth, small for gestational age infant (SGA), low birth weight infant (LBW) and birth defects. The differences in clinical manifestations, laboratory data and pregnancy outcomes between the two groups were compared. Logistic regression analysis was performed to analyze the risk factors for APOs and the progression of UCTD to definitive CTD. RESULTS There were 99 (93.39%) live births, 4 (3.77%) stillbirths and 3 (2.83%) miscarriage, 20 (18.86%) preterm delivery, 6 (5.66%) SGA, 17 (16.03%) LBW, 11 (10.37%) pre-eclampsia, 7 (6.60%) cases IUGR, 19 (17.92%) cases PROM, 10 (9.43%) cases PPH. Compared with the patients without APOs, the patients with APOs had a higher positive rate of anti-SSA antibodies (73.58% vs. 54.71%, P=0.036), higher rate of leukopenia (15.09% vs. 3.77%, P=0.046), lower haemoglobin level [109.00 (99.50, 118.00) g/L vs. 124.00 (111.50, 132.00) g/L, P < 0.001].Multivariate Logistic regression analysis showed that leucopenia (OR=0.82, 95%CI: 0.688-0.994) was an independent risk factors for APOs in UCTD (P=0.042). Within a mean follow-up time of 5.00 (3.00, 7.00) years, the rate of disease progression to a definite CTD was 14.15%, including 8 (7.54%) Sjögren's syndrome, 4 (3.77%) systemic lupus erythematosus (SLE), 4 (3.77%) rheumatoid arthritis and 1 (0.94%) mixed connective tissue disease. Multivariate Cox proportional risk regression analysis showed that Raynaud phenomenon (HR=40.157, 95%CI: 3.172-508.326) was an independent risk factor for progression to SLE. CONCLUSION Leukopenia is an independent risk factor for the development of APOs in patients with UCTD. Raynaud's phenmon is a risk factor for the progression of SLE. Tight disease monitoring and regular follow-up are the key measures to prevent adverse pregnancy outcomes and predict disease progression in UCTD patients with pregnancy.
Collapse
Affiliation(s)
- 芳凝 游
- 北京大学人民医院风湿免疫科, 北京 100044Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
- 重庆市中医院肾病风湿免疫科, 重庆 400011Department of Nephropathy and Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China
| | - 靓 罗
- 重庆市渝北区人民医院中医科, 重庆 401120Department of Chinese Medicine, the People's Hospital of Yubei District of Chongqing City, Chongqing 401120, China
| | - 香君 刘
- 北京大学人民医院风湿免疫科, 北京 100044Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 学武 张
- 北京大学人民医院风湿免疫科, 北京 100044Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 春 李
- 北京大学人民医院风湿免疫科, 北京 100044Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
32
|
Lewis EL, Reichenberger ER, Anton L, Gonzalez MV, Taylor DM, Porrett PM, Elovitz MA. Regulatory T cell adoptive transfer alters uterine immune populations, increasing a novel MHC-II low macrophage associated with healthy pregnancy. Front Immunol 2023; 14:1256453. [PMID: 37901247 PMCID: PMC10611509 DOI: 10.3389/fimmu.2023.1256453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.
Collapse
Affiliation(s)
- Emma L. Lewis
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R. Reichenberger
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M. Porrett
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michal A. Elovitz
- Women’s Biomedical Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Jiao B, Wang Y, Li S, Lu J, Liu J, Xia J, Li Y, Xu J, Tian X, Qi B. Dissecting human placental cells heterogeneity in preeclampsia and gestational diabetes using single-cell sequencing. Mol Immunol 2023; 161:104-118. [PMID: 37572508 DOI: 10.1016/j.molimm.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are pregnancy-specific complications, which affect maternal health and fetal outcomes. Currently, clinical and pathological studies have shown that placenta homeostasis is affected by these two maternal diseases. In this study, we aimed to gain insight into the heterogeneous changes in cell types in placental tissue-isolated from cesarean section by single-cell sequencing, including those patients diagnosed with PE (n = 5), GDM (n = 5) and healthy control (n = 5). A total of 96,048 cells (PE: 31,672; GDM: 25,294; control: 39,082) were identified in six cell types, dominated by trophoblast cells and immune cells. In addition, trophoblast cells were divided into four subtypes, including cytotrophoblast cells (CTBs), villous cytotrophoblasts (VCTs), syncytiotrophoblast (STB), and extravillous trophoblasts (EVTs). Immune cells are divided into lymphocytes and macrophages, of which macrophages have 3 subtypes (decidual macrophages, Hofbauer cells and macrophages), and lymphocytes have 4 subtypes (BloodNK, T cells, plasma cells, and decidual natural killer cells). Meanwhile, we also proved the orderly differentiation sequence of CTB into VCT, then STB and EVT. By pair-wise analysis of the expression and enrichment of differentially expressed genes in trophoblast cells between PE, GDM and control, it was found that these cells were involved in immune, nutrient transfer, hormone and oxidative stress pathways. In addition, T cells and macrophages play an immune defense role in both PE and GDM. The proportion of CTB and EVT cells in placental tissue was confirmed by flow cytometry. Taken together, our results suggested that the human placenta is a dynamic heterogenous organ dominated by trophoblast and immune cells, which perform their respective roles and interact with other cells in the environment to maintain normal placental function.
Collapse
Affiliation(s)
- Bo Jiao
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yan Wang
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Shenghua Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jianan Lu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jian Liu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Ji Xia
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yisha Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Juanjuan Xu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Xiujuan Tian
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| | - Bangruo Qi
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| |
Collapse
|
34
|
Jin F, Liu W, Cheng G, Cai S, Yin T, Diao L. The function of decidua natural killer cells in physiology and pathology of pregnancy. Am J Reprod Immunol 2023; 90:e13755. [PMID: 37641369 DOI: 10.1111/aji.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.
Collapse
Affiliation(s)
- Fangfang Jin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Guan Cheng
- Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
35
|
Peng L, Zhao W, Yin T, Xu C, Wang G, Du M. The unique expression pattern of human leukocyte antigen in trophoblasts potentially explains the key mechanism of maternal-fetal tolerance and successful pregnancy. J Reprod Immunol 2023; 158:103980. [PMID: 37390630 DOI: 10.1016/j.jri.2023.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The success of pregnancy mainly depends on immune tolerance of the mother for the semi-allogeneic fetus. The placenta carrying paternal antigens develops in the maternal uterus without suffering immune attack, making the underlying mechanism of maternal tolerance an enduring mystery. As we all know, human leukocyte antigen (HLA) plays an important role in antigen processing and presentation, thus inducing specific immune responses. Therefore, it is reasonable to speculate that the absence of classical HLA class-I(HLA-I) and HLA class-II (HLA-II) molecules in trophoblasts may account for the maternal-fetal tolerance. Here, we review the HLA-involved interactions between trophoblast cells and decidual immune cells, which contribute to the immunotolerance in the development of normal pregnancy. We also compare the similarity between the maternal-fetal interface and tumor-immune microenvironment because the important role of HLA molecules in tumor immune invasion can provide some references to studies of maternal-fetal immune tolerance. Besides, the abnormal HLA expression is likely to be associated with unexplained miscarriage, making HLA molecules potential therapeutic targets. The advances reported by these studies may exert profound influences on other research areas, including tumor immunity, organ transplantation and autoimmune disease in the future.
Collapse
Affiliation(s)
- Lijin Peng
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Weijie Zhao
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Tingxuan Yin
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Guangchuan Wang
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meirong Du
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
36
|
Vomstein K, Egerup P, Kolte AM, Behrendt-Møller I, Boje AD, Bertelsen ML, Eiken CS, Reiersen MR, Toth B, la Cour Freiesleben N, Nielsen HS. Biopsy-free profiling of the uterine immune system in patients with recurrent pregnancy loss and unexplained infertility. Reprod Biomed Online 2023; 47:103207. [PMID: 37211442 DOI: 10.1016/j.rbmo.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
RESEARCH QUESTION What are the differences in menstrual blood lymphocytes between controls, patients with recurrent pregnancy loss (RPL) and patients with unexplained infertility (uINF)? DESIGN Prospective study including 46 healthy controls, 28 RPL and 11 uINF patients. A feasibility study compared lymphocyte compositions of endometrial biopsies and menstrual blood collected during the first 48 h of menstruation in seven controls. In all patients, peripheral and menstrual blood from the first and subsequent 24 h were analysed separately by flow cytometry, focusing on the main lymphocyte populations and natural killer (NK) cell subsets. RESULTS The first 24 h of menstrual blood resembles the uterine immune milieu as tested by endometrial biopsy. RPL patients showed significantly higher menstrual blood CD56+ NK cell numbers than controls (mean ± SD: 31.13 ± 7.52% versus 36.73 ± 5.4%, P = 0.002). Menstrual blood CD56dimCD16bright NK cells within the CD56+ NK cell population were decreased in RPL (16.34 ± 14.65%, P = 0.011) and uINF (15.7 ± 5.91%, P = 0.02) patients versus control (20.42 ± 11.53%). uINF patients had the lowest menstrual blood CD3+ T cell counts (38.81 ± 5.04%, control versus uINF: P = 0.01) and cytotoxicity receptors NKp46 and NKG2D on CD56brightCD16dim cells were higher in uINF (68.12 ± 11.84%, P = 0.006; 45.99 ± 13.83%, P = 0.01, respectively) and RPL (NKp46: 66.21 ± 15.36%, P = 0.009) patients versus controls. RPL and uINF patients had higher peripheral CD56+ NK cell counts versus controls (11.42 ± 4.05%, P = 0.021; 12.86 ± 4.29%, P = 0.009 versus 8.4 ± 3.5%). CONCLUSIONS Compared with controls, RPL and uINF patients had a different menstrual blood-NK-subtype profile, indicating an altered cytotoxicity. In future studies, this non-invasive analysis might enable identification and monitoring of patients receiving immunomodulatory medications.
Collapse
Affiliation(s)
- Kilian Vomstein
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark.
| | - Pia Egerup
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Astrid Marie Kolte
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Ida Behrendt-Møller
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark
| | - Amalie Dyhrberg Boje
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Marie-Louise Bertelsen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Sofie Eiken
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Michelle Raupelyté Reiersen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark
| | - Bettina Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nina la Cour Freiesleben
- Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, DK-2650, Hvidovre, Denmark and Rigshospitalet, Copenhagen, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
37
|
Liu Z, Tang Y, Zhang X, Pei J, Wang C, Liu H, Yu Y, Luo S, Gu W. Crosstalk between Placental Trophoblast and Decidual Immune Cells in Recurrent Miscarriage. Int J Med Sci 2023; 20:1174-1188. [PMID: 37575278 PMCID: PMC10416716 DOI: 10.7150/ijms.86533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Recurrent miscarriage (RM) is a pregnancy complication associated with dysregulation of the maternal-fetal interface. We aimed to identify dysfunctional interactions between trophoblast cells and decidual immune cells in RM. We downloaded single-cell RNA sequencing (scRNA-seq) datasets (GSE214607) from the Gene Expression Omnibus (GEO) datasets for further analysis using the R software. The data comprised of paired placental and decidual tissues, including those from patients diagnosed with RM and matched healthy controls. A total of 22976 cells were identified in 11 cell types, including trophoblasts, immune cells, and other cells. We divided trophoblast cells into three types and analyzed their interactions with decidual immune cells. Additionally, we re-clustered NK&T cells and macrophages, identified differentially expressed genes (DEGs), enriched their functions, and compared the cell interactions with trophoblast cells in each cell type. Our single-cell atlas of the maternal-fetal interface revealed alterations in the cellular organization of the decidua and placenta, cell type-specific transcriptome, and cell communication between immune and non-immune cells in RM, which are critical for illuminating the pathophysiology of RM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Xiaoyue Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Shouling Luo
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
38
|
Jiang Y, He Y, Liu S, Li G, Chen D, Deng W, Li P, Zhang Y, Wu J, Li J, Wang L, Lin J, Wang H, Kong S, Shi G. Gαq-PKD/PKCμ signal regulating the nuclear export of HDAC5 to induce the IκB expression and limit the NF-κB-mediated inflammatory response essential for early pregnancy. eLife 2023; 12:e83083. [PMID: 37498654 PMCID: PMC10374280 DOI: 10.7554/elife.83083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Decidualization, denoting the transformation of endometrial stromal cells into specialized decidual cells, is a prerequisite for normal embryo implantation and a successful pregnancy in human. Here, we demonstrated that knockout of Gαq lead to an aberrantly enhanced inflammatory state during decidualization. Furthermore, we showed that deficiency of Gαq resulted in over-activation of nuclear factor (NF)-κB signaling, due to the decreased expression of NFκBIA, which encode the IκB protein and is the negative regulator for NF-κB. Mechanistically, Gαq deficiency decreased the Protein kinase D (PKD, also called PKCμ) phosphorylation levels, leading to attenuated HDAC5 phosphorylation and thus its nuclear export. Aberrantly high level of nuclear HDAC5 retarded histone acetylation to inhibit the induced NFκBIA transcription during decidualization. Consistently, pharmacological activation of the PKD/PKCμ or inhibition of the HDAC5 restored the inflammatory state and proper decidual response. Finally, we disclosed that over-active inflammatory state in Gαq-deficient decidua deferred the blastocyst hatching and adhesion in vitro, and the decidual expression of Gαq was significantly lower in women with recurrent pregnancy loss compared with normal pregnancy. In brief, we showed here that Gαq as a key regulator of the inflammatory cytokine's expression and decidual homeostasis in response to differentiation cues, which is required for successful implantation and early pregnancy.
Collapse
Affiliation(s)
- Yufei Jiang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yan He
- Xiamen Key Library of Rheumatology and Clinical Immunology, Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Songting Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dunjin Chen
- Department of Pathology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Li
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxiang Wu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianing Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Longmei Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guixiu Shi
- Xiamen Key Library of Rheumatology and Clinical Immunology, Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Xiao H, Lin R, Chen C, Lian R, Wu Y, Diao L, Yin T, Huang C. γδ-T cell with high toxic potential was associated with recurrent miscarriage. Am J Reprod Immunol 2023; 90:e13717. [PMID: 37382173 DOI: 10.1111/aji.13717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023] Open
Abstract
PROBLEM RM is a common clinical disease in reproduction, affecting approximately 1%-3% of women worldwide. Previous studies have shown the role of peripheral blood γδ-T cells during physiological pregnancy. However, the relationship between the immune status of peripheral blood γδ-T cells and RM is still not well defined. METHOD OF STUDY In this study, mid-luteal peripheral blood from 51 RM patients and 40 healthy women was collected to determine the immune status of γδ-T cells. The percentage of peripheral blood γδ-T cells, and the molecules mediating their toxic potential, including cytotoxic granules (perforin, granzyme B, and granulysin) and receptors (NKG2D, CD158a, and CD158b), were detected by flow cytometry. RESULTS Compared to healthy control, an increase in the proportion of total CD3+ T cells in lymphocytes and a decrease in the ratio of γδ-T cells to CD3+ T cells were observed in patients with RM. The percentages of granzyme B+ γδ-T cells and CD158a+ γδ-T cells in total γδ-T cells or lymphocytes were significantly increased in patients with RM, compared with healthy control. Conversely, CD158b+ γδ-T cells in total γδ-T cells or lymphocytes were significantly decreased in the RM group. CONCLUSION Increased peripheral blood γδ-T cell with high toxic potential was associated with RM.
Collapse
Affiliation(s)
- Huan Xiao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rong Lin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Yulian Wu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Abstract
Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-4610, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| |
Collapse
|
41
|
Naydenov DD, Vashukova ES, Barbitoff YA, Nasykhova YA, Glotov AS. Current Status and Prospects of the Single-Cell Sequencing Technologies for Revealing the Pathogenesis of Pregnancy-Associated Disorders. Genes (Basel) 2023; 14:756. [PMID: 36981026 PMCID: PMC10048492 DOI: 10.3390/genes14030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a method that focuses on the analysis of gene expression profile in individual cells. This method has been successfully applied to answer the challenging questions of the pathogenesis of multifactorial diseases and open up new possibilities in the prognosis and prevention of reproductive diseases. In this article, we have reviewed the application of scRNA-seq to the analysis of the various cell types and their gene expression changes in normal pregnancy and pregnancy complications. The main principle, advantages, and limitations of single-cell technologies and data analysis methods are described. We discuss the possibilities of using the scRNA-seq method for solving the fundamental and applied tasks related to various pregnancy-associated disorders. Finally, we provide an overview of the scRNA-seq findings for the common pregnancy-associated conditions, such as hyperglycemia in pregnancy, recurrent pregnancy loss, preterm labor, polycystic ovary syndrome, and pre-eclampsia.
Collapse
Affiliation(s)
- Dmitry D. Naydenov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Elena S. Vashukova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yury A. Barbitoff
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Yulia A. Nasykhova
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Andrey S. Glotov
- Faculty of Biology, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- D. O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, 199034 Saint-Petersburg, Russia
| |
Collapse
|
42
|
Cheng Y, Wang H, Shang J, Wang J, Yin J, Zhang J, Guo X, Wang S, Duan YG, Lee CL, Chiu PCN, Zhang J, Yeung WSB, Cao D, Yao Y. Transcriptomic analysis of mid-secretory endometrium reveals essential immune factors associated with pregnancy after single euploid blastocyst transfer. Am J Reprod Immunol 2023; 89:e13672. [PMID: 36542433 DOI: 10.1111/aji.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Implantation is a limiting factor for treatment success in assisted reproduction. Both embryonic and endometrial factors contribute to implantation. Embryonic factors have often been ignored in previous studies about the role of endometrium in implantation. In this study, we sought to identify the endometrial genes associated with negative pregnancy outcomes following the transfer of a single euploid blastocyst. METHODS Computational analyses of the transcriptomes of mid-secretory endometria from nine pregnant and seven non-pregnant patients in a cycle preceding the transfer of a single euploid blastocyst in a vitrified-warmed cycle were performed. RESULTS Principal component analysis of two reported endometrial receptivity gene sets showed close clustering of the pregnant and non-pregnant samples. Differential gene expression analysis and co-expression module analysis identified 131 genes associated with the pregnancy status. The endometrial signatures identified highlight the importance of immune and metabolic regulation in pregnancy outcome. Network analysis identified 20 hub genes that could predict pregnancy outcomes with 88.9% sensitivity and 85.7% specificity. Single-cell gene expression analysis highlighted the regulation of endometrial natural killer (NK) cells, T cells, and macrophages during embryo implantation. Immune cell abundance analysis supported the dysregulation of cytotoxic immune cells in the endometria of non-pregnant women. CONCLUSIONS We reported the first endometrial gene signature associated with pregnancy after elimination of embryo aneuploidy and highlighted the importance of the endometrial immune microenvironment and metabolic status in pregnancy outcomes.
Collapse
Affiliation(s)
- Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Jin Shang
- Medical School of Chinese PLA, Beijing, China
| | - Jue Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingwen Yin
- Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing, China
| | | | - Xinmeng Guo
- College of Medicine, Nankai University, Tianjin, China
| | - Sidong Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jian Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Metabolic Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Yang D, Dai F, Wang L, Cai S, Zhang Y, Diao L, Cheng Y. HSP70 regulates lipid metabolism of decidual macrophages to maintain normal pregnancy. J Reprod Immunol 2023; 156:103829. [PMID: 36805906 DOI: 10.1016/j.jri.2023.103829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Dysfunction of decidual macrophages (dMs) are closely associated with recurrent pregnancy loss (RPL) which brings great suffering to patients. Metabolism is essential for regulating macrophage function. Identifying molecules that regulate metabolism and function of dMs is important to revealing the pathogenesis of RPL. Single-cell sequencing data of decidual immune cells from control and RPL patients were downloaded from the GSA database and converted into feature-barcode matrices by Cell Ranger. After quality control, removal of double cell and clustering of all cells, 3579 macrophages were extracted for normalisation, scaling and re-clustering. Function and metabolism analyses were performed by R packages AddMoudleScore, scMetabolism and AUCell. Metabolism clustering based on metabolism-related genes to clarify the metabolic characteristics of macrophages clusters. These results indicated that macrophage characterised by lipid metabolism were reduced in RPL and differential expression genes analysis found that HSP70 was significantly decreased in the RPL group. Furthermore, immunofluorescence staining demonstrated that HSP70 was significantly downregulated in dMs of RPL patients compared to controls. In conclusion, HSP70 may maintain normal pregnancy by regulating lipid metabolism of dMs. This study provides new insights into the molecular mechanisms regulating the function of dMs and provides a theoretical basis for the development of new therapies for RPL.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
Garcia-Flores V, Xu Y, Pusod E, Romero R, Pique-Regi R, Gomez-Lopez N. Preparation of single-cell suspensions from the human placenta. Nat Protoc 2023; 18:732-754. [PMID: 36451054 PMCID: PMC10355223 DOI: 10.1038/s41596-022-00772-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) allows the characterization of cellular composition and interactions in complex tissues. An essential prerequisite for scRNA-seq is the preparation of high-quality single-cell suspensions. So far, no protocols have been described for preparing such suspensions from the placenta, an essential organ for fetal development and a site of maternal-fetal immune interaction. Here we describe a protocol for the preparation of high-quality single-cell suspensions from human placental tissues-namely, the basal plate, placental villi and chorioamniotic membranes. The protocol outlines the collection of tissues from the placenta, tailored dissociation procedures for each tissue, and the cryopreservation of single-cell suspensions for multiplex sequencing library preparation. The protocol can be performed by a qualified investigator with basic working knowledge of placental structure. Moreover, the single-cell suspensions generated by using this protocol are compatible with droplet-based scRNA-seq technology, such as the 10x Genomics Chromium system. This protocol reliably produces single-cell suspensions from the placental tissues with high yield and viability for scRNA-seq. This protocol takes ~6 h to complete from tissue collection to cryopreservation of single-cell suspensions, and an additional 2 h for thawing of cryopreserved single cells.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD and Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
45
|
Chen Q, Shan D, Xie Y, Luo X, Wu Y, Chen Q, Dong R, Hu Y. Single cell RNA sequencing research in maternal fetal interface. Front Cell Dev Biol 2023; 10:1079961. [PMID: 36704195 PMCID: PMC9871254 DOI: 10.3389/fcell.2022.1079961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The maternal-fetal interface is an essential environment for embryonic growth and development, and a successful pregnancy depends on the dynamic balance of the microenvironment at the maternal-fetal interface. Single-cell sequencing, which unlike bulk sequencing that provides averaged data, is a robust method for interpreting the cellular and molecular landscape at single-cell resolution. With the support of single-cell sequencing, the issue of maternal-fetal interface heterogeneity during pregnancy has been more deeply elaborated and understood, which is important for a deeper understanding of physiological and pathological pregnancy. In this paper, we analyze the recent studies of single-cell transcriptomics in the maternal-fetal interface, and provide new directions for understanding and treating various pathological pregnancies.
Collapse
Affiliation(s)
- Qian Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| | - Dan Shan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yupei Xie
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xingrong Luo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuxia Wu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiuhe Chen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruihong Dong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yayi Hu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,Qingbaijiang Maternal and Child Health Hospital, Chengdu, China,*Correspondence: Qian Chen, ; Yayi Hu,
| |
Collapse
|
46
|
Bao S, Chen Z, Qin D, Xu H, Deng X, Zhang R, Ma J, Lu Z, Jiang S, Zhang X. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage. Hum Reprod 2023; 38:57-74. [PMID: 36355621 DOI: 10.1093/humrep/deac240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do distinct subpopulations of decidual stromal cells (DSCs) exist and if so, are given subpopulations enriched in recurrent miscarriage (RM)? SUMMARY ANSWER Three subpopulations of DSCs were identified from which inflammatory DSCs (iDSCs) and glycolytic DSCs (glyDSCs) are significantly enriched in RM, with implicated roles in driving decidual inflammation and immune dysregulation. WHAT IS KNOWN ALREADY DSCs play crucial roles in establishing and maintaining a successful pregnancy; dysfunction of DSCs has been considered as one of the key reasons for the development of RM. STUDY DESIGN, SIZE, DURATION We collected 15 early decidual samples from five healthy donors (HDs) and ten RM patients to perform single-cell RNA sequencing (scRNA-seq). A total of 43 RM patients and 37 HDs were enrolled in the validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Non-immune cells and immune cells of decidual tissues were sorted by flow cytometry to perform scRNA-seq. We used tissue microarrays (TMA) to validate three distinct subpopulations of DSCs. The expression of inflammatory and glycolytic proteins by DSCs was validated by immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Different subsets of decidual NK (dNK) cells and macrophages were also validated by multicolor flow cytometry and mIHC. Cell ligand-receptor and spatial analyses between DSCs and immune cells were analyzed by mIHC. MAIN RESULTS AND THE ROLE OF CHANCE We classify the DSCs into three subtypes based on scRNA-seq data: myofibroblastic (myDSCs), inflammatory (iDSCs) and glycolytic (glyDSCs), with the latter two being significantly enriched in RM patients. The distribution patterns of DSC subtypes in the RM and HD groups were validated by mIHC. Single-cell analyses indicate that the differentiation of iDSCs and glyDSCs may be coupled with the degrees of hypoxia. Consequently, we propose a pathological model in which a vicious circle is formed and fueled by hypoxic stress, uncontrolled inflammation and aberrant glycolysis. Furthermore, our results show that the inflammatory SPP1+ macrophages and CD18+ dNK cells are preferentially increased in the decidua of RM patients. Cell ligand-receptor and mIHC spatial analyses uncovered close interactions between pathogenic DSCs and inflammatory SPP1+ macrophages and CD18+ NK cells in RM patients. LARGE SCALE DATA The raw single-cell sequence data reported in this paper were deposited at the National Omics Data Encyclopedia (www.biosino.org), under the accession number OEP002901. LIMITATIONS, REASONS FOR CAUTION The number of decidual samples for scRNA-seq was limited and in-depth functional studies on DSCs are warranted in future studies. WIDER IMPLICATIONS OF THE FINDINGS Identification of three DSC subpopulations opens new avenues for further investigation of their roles in RM patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Strategic Priority Research Program (No. XDB29030302), Frontier Science Key Research Project (QYZDB-SSW-SMC036), Chinese Academy of Sciences; National Key Research and Development Program of China (2021YFE0200600), National Natural Science Foundation of China (No. 31770960), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX02, HS2021SHZX001), and Shanghai Committee of Science and Technology (17411967800). All authors report no conflict of interest.
Collapse
Affiliation(s)
- Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zhouping Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
47
|
Fang DN, Zheng CW, Ma YL. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: A review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:17-25. [PMID: 36216728 DOI: 10.1016/j.joim.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023]
Abstract
The root of Scutellaria baicalensis Georgi, also called Huangqin, is frequently used in traditional Chinese medicine. In ancient China, S. baicalensis root was used to clear heat, protect the fetus, and avoid a miscarriage for thousands of years. In modern times, pregnancy-related diseases can seriously affect maternal and fetal health, but few systematic studies have explored the mechanisms and potential targets of S. baicalensis root in the treatment of pregnancy-related diseases. Flavonoids (baicalein, wogonin and oroxylin A) and flavonoid glycosides (baicalin and wogonoside) are the main chemical components in the root of S. baicalensis. This study presents the current understanding of the major chemical components in the root of S. baicalensis, focusing on their traditional uses, potential therapeutic effects and ethnopharmacological relevance to pregnancy-related disorders. The mechanisms, potential targets and experimental models of S. baicalensis root for ameliorating pregnancy-related diseases, such as recurrent spontaneous abortion, preeclampsia, preterm birth, fetal growth restriction and gestational diabetes mellitus, are highlighted.
Collapse
Affiliation(s)
- Dan-Na Fang
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China
| | - Chang-Wu Zheng
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China
| | - Ye-Ling Ma
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China.
| |
Collapse
|
48
|
Betti M, Vizza E, Piccione E, Pietropolli A, Chiofalo B, Pallocca M, Bruno V. Towards reproducible research in recurrent pregnancy loss immunology: Learning from cancer microenvironment deconvolution. Front Immunol 2023; 14:1082087. [PMID: 36911667 PMCID: PMC9996132 DOI: 10.3389/fimmu.2023.1082087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The most recent international guidelines regarding recurrent pregnancy loss (RPL) exclude most of the immunological tests recommended for RPL since they do not reach an evidence-based level. Comparisons for metanalysis and systematic reviews are limited by the ambiguity in terms of RPL definition, etiological and risk factors, diagnostic work-up, and treatments applied. Therefore, cohort heterogeneity, the inadequacy of numerosity, and the quality of data confirm a not standardized research quality in the RPL field, especially for immunological background, for which potential research application remains confined in a separate single biological layer. Innovative sequencing technologies and databases have proved to play a significant role in the exploration and validation of cancer research in the context of dataset quality and bioinformatics tools. In this article, we will investigate how bioinformatics tools born for large-scale cancer immunological research could revolutionize RPL immunological research but are limited by the nature of current RPL datasets.
Collapse
Affiliation(s)
- Martina Betti
- Biostatistics, Bioinformatics and Clinical Trial Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Catholic University Our Lady of Good Counsel, Tiranë, Albania
| | - Adalgisa Pietropolli
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University of Roma Tor Vergata, Rome, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
49
|
Comparison of the Single-Cell Immune Landscape of Testudines from Different Habitats. Cells 2022; 11:cells11244023. [PMID: 36552787 PMCID: PMC9816942 DOI: 10.3390/cells11244023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Testudines, also known as living fossils, have evolved diversely and comprise many species that occupy a variety of ecological niches. However, the immune adaptation of testudines to the different ecological niches remains poorly understood. This study compared the composition, function, and differentiation trajectories of peripheral immune cells in testudines (Chelonia mydas, Trachemys scripta elegans, Chelonoidis carbonaria, and Pelodiscus sinensis) from different habitats using the single-cell RNA sequencing (scRNA-seq) technique. The results showed that T. scripta elegans, which inhabits freshwater and brackish environments, had the most complex composition of peripheral immune cells, with 11 distinct immune cell subsets identified in total. The sea turtle C. mydas, had the simplest composition of peripheral immune cells, with only 5 distinct immune cell clusters. Surprisingly, neither basophils were found in C. mydas nor T cells in C. carbonaria. Basophil subsets in peripheral blood were identified for the first time; two basophil subtypes (GATA2-high-basophils and GATA2-low-basophils) were observed in the peripheral blood of T. scripta elegans. In addition, ACKR4 cells, CD4 T cells, CD7 T cells, serotriflin cells, and ficolin cells were specifically identified in the peripheral blood of T. scripta elegans. Furthermore, LY6G6C cells, SPC24 cells, and NKT cells were specifically observed in C. carbonaria. Moreover, there were differences in the functional status and developmental trajectory of peripheral immune cells among the testudine species. The identification of specific features of peripheral immune cells in testudines from different habitats may enable elucidation of the adaptation mechanism of testudines to various ecological niches.
Collapse
|
50
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|