G. A, J. JP, I. TMB, Packiavathy SV, Gautam S. Internet of Things (IoT) based automated sanitizer dispenser and COVID-19 statistics reporter in a post-pandemic world.
HEALTH AND TECHNOLOGY 2023;
13:327-341. [PMID:
36694669 PMCID:
PMC9851904 DOI:
10.1007/s12553-023-00728-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Purpose
Coronavirus is among the deadliest viruses of the 21st century. There is still a Coronavirus epidemic that affects most countries worldwide today. To prevent future outbreaks and protect public health, it is essential to invest in research and innovation on vaccines, treatments, diagnostic tests, public health infrastructure, and emergency response planning. Additionally, we need to work on mitigation strategies and take a comprehensive and multidisciplinary approach to prevent and fight against the virus.
Methods
For the purpose of preventing the spread of microbial organisms, it is essential to take advantage of automatic sanitizer dispensers by deploying them in public places. This is one of the most feasible and effective ways to ensure that people have easy access to hand sanitizer and can reduce the spread of germs.
Results
The proposed solution is a contactless sanitizer dispenser with an integrated temperature monitoring system, as well as an alert system for users who exhibit the symptom of infection. Moreover, the proposed solution has added advantage of interfacing with an electronic door so that we can easily implement it at the entrance of a public building/public transportation. This dispenser will also collect data that can be used to identify a symptomatic user and alert the appropriate authorities for safe quarantine. In addition, it is also used to monitor usage metrics, record user entries, and conduct statistical surveys using the ThinkSpeak platform.
Conclusions
The proposed model could be a feasible solution to prevent the entry of infected persons and asymptomatic carriers indoors. This can be achieved by implementing automated temperature screening before allowing entry into the building. This can help identify individuals who are potentially infected with the virus and prevent them from entering the premises and potentially spreading the disease to others. Overall, the proposed model is a comprehensive and practical solution that can help to prevent the entry of infected persons and asymptomatic carriers indoors and help to keep the public safe.
Collapse