1
|
Möller K, Tillmann U, Pöchhacker M, Varga E, Krock B, Porreca F, Koch F, Harris TM, Meunier CL. Toxic effects of the emerging Alexandrium pseudogonyaulax (Dinophyceae) on multiple trophic levels of the pelagic food web. HARMFUL ALGAE 2024; 138:102705. [PMID: 39244240 DOI: 10.1016/j.hal.2024.102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/09/2024]
Abstract
The dinoflagellate Alexandrium pseudogonyaulax, a harmful algal bloom species, is currently appearing in increasing frequency and abundance across Northern European waters, displacing other Alexandrium species. This mixotrophic alga produces goniodomins (GDs) and bioactive extracellular substances (BECs) that may pose a threat to coastal ecosystems and other marine resources. This study demonstrated the adverse effects of A. pseudogonyaulax on four marine trophic levels, including microalgae (Rhodomonas salina), microzooplankton (Polykrikos kofoidii) and mesozooplankton (Acartia tonsa), as well as fish gill cells (RTgill-W1, Oncorhynchus mykiss), ultimately leading to enhanced mortality and cell lysis. Furthermore, cell-free supernatants collected from A. pseudogonyaulax cultures caused complete loss of metabolic activity in the RTgill-W1 cell line, indicating ichthyotoxic properties, while all tested GDs were much less toxic. In addition, cell-free supernatants of A. pseudogonyaulax led to cell lysis of R. salina, while all tested GDs were non-lytic. Finally, reduced egg hatching rates of A. tonsa eggs exposed to cell-free supernatants of A. pseudogonyaulax and impaired mobility of P. kofoidii and A. tonsa exposed to A. pseudogonyaulax were also observed. Altogether, bioassay results suggest that the toxicity of A. pseudogonyaulax is mainly driven by BECs and not by GDs, although further research into factors modulating the lytic activity of Alexandrium spp. are needed.
Collapse
Affiliation(s)
- Kristof Möller
- Section Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.
| | - Urban Tillmann
- Section Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Magdalena Pöchhacker
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bernd Krock
- Section Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Francesco Porreca
- Section Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Florian Koch
- Section Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Thomas M Harris
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Cédric L Meunier
- Section Shelf Sea Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany
| |
Collapse
|
2
|
Ding Z, Sun X, Qiao Y, Liu Y, Liu J. Feeding Behavior Responses of the Small Copepod, Paracalanus parvus, to Toxic Algae at Different Concentrations. Animals (Basel) 2023; 13:3116. [PMID: 37835722 PMCID: PMC10571817 DOI: 10.3390/ani13193116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The feeding relationship between copepods and phytoplankton has immense ecological significance. This study investigated the feeding behavior of copepods by studying the feeding selectivity of Paracalanus parvus, a key small copepod species, using a high-speed camera. The feeding behavior of P. parvus separately fed on three algae, Prorocentrum minimum, Alexandrium minutum, and Thalassiosira weissflogii, was studied at five different concentrations. The factors characterizing feeding behavior, including the beating frequency (BF), beating time (BT), and rejection behavior, were analyzed. The average BT and BF of P. parvus fed on toxic algae were significantly lower than those of copepods fed on nontoxic algae, indicating that the toxic algae negatively affected their feeding behavior. There were no significant differences in feed rejection among the three algae during the short period of experimentation, indicating that the rejection behavior was insignificant in the early period (within 20 min) of feeding on toxic algae. The feeding behavior was inhibited when the concentration reached 250 cells/mL. The BT was initially affected at increasing concentrations followed by the BF, and P. minimum and A. minutum reduced the BF at concentrations of 250 and 1000 cells/mL, respectively. Analysis of the average BFs revealed that P. parvus was more significantly affected by P. minimum containing diarrheal shellfish poison than by A. minutum containing paralytic shellfish poison. The BF of copepods fed on P. minimum was significantly lower than that of copepods fed on A. minutum at 250-500 cells/mL but was not significantly different from that at 1000 cells/mL. This indicated that the inhibitory effect of P. minimum on the feeding behavior was more significant at concentrations observed at the onset of red tide blooms (0.25-0.5 × 102 cells/mL), but insignificant at concentrations reaching those in advanced red tides (>103 cells/mL). This study demonstrates that toxic dinoflagellates alter the feeding behavior of copepods and describes the variations in their feeding response to different algal species and concentrations. The findings provide crucial insights for further studies on the feeding relationship between copepods and phytoplankton and on functional assessment of plankton ecosystems.
Collapse
Affiliation(s)
- Zixuan Ding
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Xiaohong Sun
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Yiming Qiao
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Ying Liu
- Weihai Marine and Fishery Monitoring and Hazard Migration Centre, Weihai 264209, China;
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| |
Collapse
|
3
|
Christou ED, Varkitzi I, Maneiro I, Zervoudaki S, Pagou K. The Influence of the Toxic Dinoflagellate Alexandrium minutum, Grown under Different N:P Ratios, on the Marine Copepod Acartia tonsa. Toxins (Basel) 2023; 15:toxins15040287. [PMID: 37104225 PMCID: PMC10144234 DOI: 10.3390/toxins15040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
HABs pose a threat to coastal ecosystems, the economic sector and human health, and are expanding globally. However, their influence on copepods, a major connector between primary producers and upper trophic levels, remains essentially unknown. Microalgal toxins can eventually control copepod survival and reproduction by deterring grazing and hence reducing food availability. We present several 24-h experiments in which the globally distributed marine copepod, Acartia tonsa, was exposed to different concentrations of the toxic dinoflagellate, Alexandrium minutum, grown under three N:P ratios (4:1, 16:1 and 80:1), with the simultaneous presence of non-toxic food (the dinoflagellate Prorocentrum micans). The different N:P ratios did not affect the toxicity of A. minutum, probably due to the low toxicity of the tested strain. Production of eggs and pellets as well as ingested carbon appeared to be affected by food toxicity. Toxicity levels in A. minutum also had an effect on hatching success and on the toxin excreted in pellets. Overall, A. minutum toxicity affected the reproduction, toxin excretion and, to an extent, the feeding behavior of A. tonsa. This work indicates that even short-term exposure to toxic A. minutum can impact the vital functions of A. tonsa and might ultimately pose serious threats to copepod recruitment and survival. Still, further investigation is required for identifying and understanding, in particular, the long-term effects of harmful microalgae on marine copepods.
Collapse
Affiliation(s)
- Epaminondas D Christou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, P.O. Box 712, 19013 Athens, Greece
| | - Ioanna Varkitzi
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, P.O. Box 712, 19013 Athens, Greece
| | - Isabel Maneiro
- Istituti di Ricerca per l'Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS CNR), SS di Capo Granitola, Via del Mare 3, Torretta Granitola, 91021 Campobello di Mazara, Italy
| | - Soultana Zervoudaki
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, P.O. Box 712, 19013 Athens, Greece
| | - Kalliopi Pagou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, P.O. Box 712, 19013 Athens, Greece
| |
Collapse
|
4
|
Rodríguez Torres R, Almeda R, Xu J, Hartmann N, Rist S, Brun P, Nielsen TG. The Behavior of Planktonic Copepods Minimizes the Entry of Microplastics in Marine Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:179-189. [PMID: 36548351 DOI: 10.1021/acs.est.2c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The entry of microplastics (MPs) into marine food webs is a major environmental concern. We investigated how the behavior of planktonic copepods influences the risk of MPs to enter marine food webs by applying a trait-based approach and by combining experiments (bottle incubations and video observations) with biogeographical analyses. We aimed to evaluate which type of feeding behavior is most risky in terms of MP ingestion and which marine geographical areas are more susceptible to MP ingestion by planktonic copepods. We used different species as models of the main foraging behaviors in planktonic copepods: feeding-current, cruising, ambush, and mixed behavior feeding. All behaviors showed a similarly low risk of MP ingestion, up to 1 order of magnitude lower than for similar-sized microalgae. We did not observe any influence of the prey type or MP size (8 and 20 μm) on MP ingestion for any of the behaviors. By mapping the global distribution of feeding behaviors, we showed that feeding-current feeding is the most common behavior, but the risk of MP ingestion remains equally low across the global ocean, independently of the predominant behavior. Overall, our results suggest a low risk of MP ingestion by planktonic copepods and therefore a minimal risk of trophic transfer of MPs via marine pelagic copepods in marine ecosystems.
Collapse
Affiliation(s)
- Rocío Rodríguez Torres
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
- Biology Department, EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria, Tafira Baja, Las Palmas 35017, Spain
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Nanna Hartmann
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Kongens Lyngby 2800, Denmark
| | - Sinja Rist
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Kongens Lyngby 2800, Denmark
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
| |
Collapse
|
5
|
Jebali A, Sanchez MR, Hanschen ER, Starkenburg SR, Corcoran AA. Trait drift in microalgae and applications for strain improvement. Biotechnol Adv 2022; 60:108034. [PMID: 36089253 DOI: 10.1016/j.biotechadv.2022.108034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Microalgae are increasingly used to generate a wide range of commercial products, and there is growing evidence that microalgae-based products can be produced sustainably. However, industrial production of microalgal biomass is not as developed as other biomanufacturing platform technologies. In addition, results of bench-scale research often fail to translate to large-scale or mass production systems. This disconnect may result from trait drift and evolution occurring, through time, in response to unique drivers in each environment, such as cultivation regimes, weather, and pests. Moreover, outdoor and indoor cultivation of microalgae has the potential to impose negative selection pressures, which makes the maintenance of desired traits a challenge. In this context, this review sheds the light on our current understanding of trait drift and evolution in microalgae. We delineate the basics of phenotype plasticity and evolution, with a focus on how microalgae respond under various conditions. In addition, we review techniques that exploit phenotypic plasticity and evolution for strain improvement in view of industrial commercial applications, highlighting associated advantages and shortcomings. Finally, we suggest future research directions and recommendations to overcome unwanted trait drift and evolution in microalgae cultivation.
Collapse
Affiliation(s)
- Ahlem Jebali
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA.
| | - Monica R Sanchez
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Erik R Hanschen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | | | - Alina A Corcoran
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA
| |
Collapse
|
6
|
Nwaji AR, Arieri O, Anyang AS, Nguedia K, Abiade EB, Forcados GE, Oladipo OO, Makama S, Elisha IL, Ozele N, Gotep JG. Natural toxins and One Health: a review. SCIENCE IN ONE HEALTH 2022; 1:100013. [PMID: 39076609 PMCID: PMC11262277 DOI: 10.1016/j.soh.2023.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 07/31/2024]
Abstract
Background The One Health concept considers the interconnectivity, interactions and interdependence of humans, animals and the environment. Humans, animals and other organisms are constantly exposed to a wide range of natural toxins present in the environment. Thus, there is growing concern about the potential detrimental effects that natural toxins could pose to achieve One Health. Interestingly, alkaloids, steroids and bioactive peptides obtained from natural toxins could be used for the development of therapeutic agents. Methodology Our literature search focused on the following keywords; toxins, One Health, microbial toxins, mycotoxins, phytotoxins, phycotoxins, insect toxins and toxin effects. Google Scholar, Science Direct, PubMed and Web of Science were the search engines used to obtain primary databases. We chose relevant full-text articles and review papers published in English language only. The research was done between July 2022 and January 2023. Results Natural toxins are poisonous substances comprising bioactive compounds produced by microorganisms, invertebrates, plants and animals. These compounds possess diverse structures and differ in biological function and toxicity, posing risks to human and animal health through the contamination of the environment, causing disease or death in certain cases. Findings from the articles reviewed revealed that effects of natural toxins on animals and humans gained more attention than the impact of natural toxins on the environment and lower organisms, irrespective of the significant roles that lower organisms play to maintain ecosystem balance. Also, systematic approaches for toxin control in the environment and utilization for beneficial purposes are inadequate in many regions. Remarkably, bioactive compounds present in natural toxins have potential for the development of therapeutic agents. These findings suggest that global, comprehensive and coordinated efforts are required for improved management of natural toxins through an interdisciplinary, One Health approach. Conclusion Adopting a One Health approach is critical to addressing the effects of natural toxins on the health of humans, animals and the environment.
Collapse
Affiliation(s)
- Azubuike Raphael Nwaji
- Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Onikisateinba Arieri
- Department of Industrial Chemistry and Petrochemical Technology, Faculty of Science Laboratory, University of Portharcourt, Nigeria
| | | | - Kaze Nguedia
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Cameroon
| | | | | | | | - Sunday Makama
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ishaku Leo Elisha
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nonyelim Ozele
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Jurbe Gofwan Gotep
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
7
|
Ehrlich E, Thygesen UH, Kiørboe T. Evolution of toxins as a public good in phytoplankton. Proc Biol Sci 2022; 289:20220393. [PMID: 35730156 PMCID: PMC9233926 DOI: 10.1098/rspb.2022.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022] Open
Abstract
Toxic phytoplankton blooms have increased in many waterbodies worldwide with well-known negative impacts on human health, fisheries and ecosystems. However, why and how phytoplankton evolved toxin production is still a puzzling question, given that the producer that pays the costs often shares the benefit with other competing algae and thus provides toxins as a 'public good' (e.g. damaging a common competitor or predator). Furthermore, blooming phytoplankton species often show a high intraspecific variation in toxicity and we lack an understanding of what drives the dynamics of coexisting toxic and non-toxic genotypes. Here, by using an individual-based two-dimensional model, we show that small-scale patchiness of phytoplankton strains caused by demography can explain toxin evolution in phytoplankton with low motility and the maintenance of genetic diversity within their blooms. This patchiness vanishes for phytoplankton with high diffusive motility, suggesting different evolutionary pathways for different phytoplankton groups. In conclusion, our study reveals that small-scale spatial heterogeneity, generated by cell division and counteracted by diffusive cell motility and turbulence, can crucially affect toxin evolution and eco-evolutionary dynamics in toxic phytoplankton species. This contributes to a better understanding of conditions favouring toxin production and the evolution of public goods in asexually reproducing organisms in general.
Collapse
Affiliation(s)
- Elias Ehrlich
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Uffe Høgsbro Thygesen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Xu J, Rodríguez-Torres R, Rist S, Nielsen TG, Hartmann NB, Brun P, Li D, Almeda R. Unpalatable Plastic: Efficient Taste Discrimination of Microplastics in Planktonic Copepods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6455-6465. [PMID: 35475612 DOI: 10.1021/acs.est.2c00322] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planktonic copepods are the most abundant animals in the ocean and key players in global biochemical processes. Recent modeling suggests that zooplankton ingestion of microplastics (MPs) can disrupt the biological carbon pump and accelerate a global loss of oceanic oxygen. Here we investigate the behavioral responses and ingestion rates of a model feeding-current generating copepod when exposed to microplastics of different characteristics by small-scale video observations and bottle incubations. We found that copepods rejected 80% of the microplastics after touching them with their mouth parts, in essence exhibiting a kind of taste discrimination. High rejection rates of microplastics were independent of polymer type, shape, presence of biofilms, or sorbed pollutant (pyrene), indicating that microplastics are unpalatable for feeding-current feeding copepods and that post-capture taste discrimination is a main sensorial mechanism in the rejection of microplastics. In an ecological context, taking into account the behaviors of planktonic copepods and the concentrations of microplastics found in marine waters, our results suggest a low risk of microplastic ingestion by zooplankton and a low impact of microplastics on the vertical exportation of fecal pellets.
Collapse
Affiliation(s)
- Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Rocío Rodríguez-Torres
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sinja Rist
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Nanna Bloch Hartmann
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, 2800 Kgs. Lyngby, Denmark
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research. WSL, CH-8903 Birmensdorf, Switzerland
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Rodrigo Almeda
- National Institute of Aquatic Resource, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- EOMAR, IU-ECOAQUA, Biology Department, University of Las Palmas de Gran Canaria, 35017 Tafira Baja, Las Palmas, Spain
| |
Collapse
|
9
|
Olesen AJ, Ryderheim F, Krock B, Lundholm N, Kiørboe T. Costs and benefits of predator-induced defence in a toxic diatom. Proc Biol Sci 2022; 289:20212735. [PMID: 35414232 DOI: 10.1098/rspb.2021.2735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton employ a variety of defence mechanisms against predation, including production of toxins. Domoic acid (DA) production by the diatom Pseudo-nitzschia spp. is induced by the presence of predators and is considered to provide defence benefits, but the evidence is circumstantial. We exposed eight different strains of P. seriata to chemical cues from copepods and examined the costs and the benefits of toxin production. The magnitude of the induced toxin response was highly variable among strains, while the costs in terms of growth reduction per DA cell quota were similar and the trade-off thus consistent. We found two components of the defence in induced cells: (i) a 'private good' in terms of elevated rejection of captured cells and (ii) a 'public good' facilitated by a reduction in copepod feeding activity. Induced cells were more frequently rejected by copepods and rejections were directly correlated with DA cell quota and independent of access to other food items. By contrast, the public-good effect was diminished by the presence of alternative prey suggesting that it does not play a major role in bloom formation and that its evolution is closely associated with the grazing-deterrent private good.
Collapse
Affiliation(s)
- Anna J Olesen
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Long M, Krock B, Castrec J, Tillmann U. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins. Toxins (Basel) 2021; 13:905. [PMID: 34941742 PMCID: PMC8703713 DOI: 10.3390/toxins13120905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, 29280 Plouzané, France;
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Justine Castrec
- University Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France;
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| |
Collapse
|
11
|
Brown ER, Moore SG, Gaul DA, Kubanek J. Differentiating toxic and nontoxic congeneric harmful algae using the non-polar metabolome. HARMFUL ALGAE 2021; 110:102129. [PMID: 34887009 DOI: 10.1016/j.hal.2021.102129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recognition and rejection of chemically defended prey is critical to maximizing fitness for predators. Paralytic shellfish toxins (PSTs) which strongly inhibit voltage-gated sodium channels in diverse animal taxa are produced by several species of the bloom-forming algal genus Alexandrium where they appear to function as chemical defenses against grazing copepods. Despite PSTs being produced and localized within phytoplankton cells, some copepods distinguish toxic from non-toxic prey, selectively ingesting less toxic cells, in ways that suggest cell surface recognition perhaps associated with non-polar metabolites. In this study LC/MS and NMR-based metabolomics revealed that the non-polar metabolomes of two toxic species (Alexandrium catenella and Alexandrium pacificum) vary considerably from their non-toxic congener Alexandrium tamarense despite all three being very closely related. Toxic and non-toxic Alexandrium spp. were distinguished from each other by metabolites belonging to seven lipid classes. Of these, 17 specific metabolites were significantly more abundant in both toxic A. catenella and A. pacificum compared to non-toxic A. tamarense suggesting that just a small portion of the observed metabolic variability is associated with toxicity. Future experiments aimed at deciphering chemoreception mechanisms of copepod perception of Alexandrium toxicity should consider these metabolites, and the broader lipid classes phosphatidylcholines and sterols, as potential candidate cues.
Collapse
Affiliation(s)
- Emily R Brown
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA 30332, USA
| | - Sam G Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA
| | - Julia Kubanek
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA 30332, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|
13
|
Ryderheim F, Selander E, Kiørboe T. Predator-induced defence in a dinoflagellate generates benefits without direct costs. THE ISME JOURNAL 2021; 15:2107-2116. [PMID: 33580210 PMCID: PMC8245491 DOI: 10.1038/s41396-021-00908-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
Inducible defences in phytoplankton are often assumed to come at a cost to the organism, but trade-offs have proven hard to establish experimentally. A reason for this may be that some trade-off costs only become evident under resource-limiting conditions. To explore the effect of nutrient limitation on trade-offs in toxin-producing dinoflagellates, we induced toxin production in Alexandrium minutum by chemical cues from copepods under different levels of nitrogen limitation. The effects were both nitrogen- and grazer-concentration dependent. Induced cells had higher cellular toxin content and a larger fraction of the cells was rejected by a copepod, demonstrating the clear benefits of toxin production. Induced cells also had a higher carbon and nitrogen content, despite up to 25% reduction in cell size. Unexpectedly, induced cells seemed to grow faster than controls, likely owing to a higher specific nutrient affinity due to reduced size. We thus found no clear trade-offs, rather the opposite. However, indirect ecological costs that do not manifest under laboratory conditions may be important. Inducing appropriate defence traits in response to threat-specific warning signals may also prevent larger cumulative costs from expressing several defensive traits simultaneously.
Collapse
Affiliation(s)
- Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark.
| | - Erik Selander
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
14
|
Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The Cost of Toxicity in Microalgae: Direct Evidence From the Dinoflagellate Alexandrium. Front Microbiol 2019; 10:1065. [PMID: 31178832 PMCID: PMC6538772 DOI: 10.3389/fmicb.2019.01065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Empirical evidence of the cost of producing toxic compounds in harmful microalgae is completely lacking. Yet costs are often assumed to be high, implying substantial ecological benefits with adaptive significance exist. To study potential fitness costs of toxin production, 16 strains including three species of the former Alexandrium tamarense species complex were grown under both carbon limitation and unlimited conditions. Growth rates, levels of intracellular paralytic shellfish toxins (PSTs), and effects of lytic compounds were measured to provide trade-off curves of toxicity for both PST and lytic toxicity under high light (300 μmol photons m-2 s-1) and under low light (i.e., carbon limited; 20 μmol photons m-2 s-1). Fitness costs in terms of reduced growth rates with increasing PST content were only evident under unlimited conditions, but not under carbon limitation, in which case PST production was positively correlated with growth. The cost of production of lytic compounds was detected both under carbon limitation and unlimited conditions, but only in strains producing PST. The results may direct future research in understanding the evolutionary role and ecological function of algal toxins. The intrinsic growth rate costs should be accounted for in relation to quantifying benefits such as grazer avoidance or toxin-mediated prey capture in natural food web settings.
Collapse
Affiliation(s)
- Hannah E Blossom
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| | - Bo Markussen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Daugbjerg
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bernd Krock
- Alfred-Wegener Institut für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Andreas Norlin
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark
| |
Collapse
|
15
|
Cadier M, Andersen KH, Visser AW, Kiørboe T. Competition–defense tradeoff increases the diversity of microbial plankton communities and dampens trophic cascades. OIKOS 2019. [DOI: 10.1111/oik.06101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mathilde Cadier
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark 2800 Kgs. Lyngby Denmark
| | - Ken H. Andersen
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark 2800 Kgs. Lyngby Denmark
| | - Andre W. Visser
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark 2800 Kgs. Lyngby Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
16
|
Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2019; 36:1093-1116. [DOI: 10.1039/c8np00085a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A review of chemically mediated interactions in planktonic marine environments covering new studies from January 2015 to December 2017.
Collapse
Affiliation(s)
- Emily R. Brown
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Marisa R. Cepeda
- School of Chemistry and Biochemistry
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Samantha J. Mascuch
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | | | - Julia Kubanek
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
17
|
Chakraborty S, Pančić M, Andersen KH, Kiørboe T. The cost of toxin production in phytoplankton: the case of PST producing dinoflagellates. THE ISME JOURNAL 2019; 13:64-75. [PMID: 30108304 PMCID: PMC6298997 DOI: 10.1038/s41396-018-0250-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Many species of phytoplankton produce toxins that may provide protection from grazing. In that case one would expect toxin production to be costly; else all species would evolve toxicity. However, experiments have consistently failed to show any costs. Here, we show that costs of toxin production are environment dependent but can be high. We develop a fitness optimization model to estimate rate, costs, and benefits of toxin production, using PST (paralytic shellfish toxin) producing dinoflagellates as an example. Costs include energy and material (nitrogen) costs estimated from well-established biochemistry of PSTs, and benefits are estimated from relationship between toxin content and grazing mortality. The model reproduces all known features of PST production: inducibility in the presence of grazer cues, low toxicity of nitrogen-starved cells, but high toxicity of P-limited and light-limited cells. The model predicts negligible reduction in cell division rate in nitrogen replete cells, consistent with observations, but >20% reduction when nitrogen is limiting and abundance of grazers high. Such situation is characteristic of coastal and oceanic waters during summer when blooms of toxic algae typically develop. The investment in defense is warranted, since the net growth rate is always higher in defended than in undefended cells.
Collapse
Affiliation(s)
- Subhendu Chakraborty
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark.
| | - Marina Pančić
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| | - Ken H Andersen
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Kgs.2800, Lyngby, Denmark
| |
Collapse
|
18
|
Xu J, Kiørboe T. Toxic dinoflagellates produce true grazer deterrents. Ecology 2018; 99:2240-2249. [DOI: 10.1002/ecy.2479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jiayi Xu
- Centre for Ocean Life; National Institute of Aquatic Resources; Technical University of Denmark; Kemitorvet, 2800 Kgs. Lyngby Denmark
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 200062 Shanghai China
| | - Thomas Kiørboe
- Centre for Ocean Life; National Institute of Aquatic Resources; Technical University of Denmark; Kemitorvet, 2800 Kgs. Lyngby Denmark
| |
Collapse
|
19
|
Pančić M, Kiørboe T. Phytoplankton defence mechanisms: traits and trade-offs. Biol Rev Camb Philos Soc 2018; 93:1269-1303. [DOI: 10.1111/brv.12395] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Pančić
- Centre for Ocean Life; Technical University of Denmark, DTU Aqua, Kemitorvet B201; Kongens Lyngby DK-2800 Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life; Technical University of Denmark, DTU Aqua, Kemitorvet B201; Kongens Lyngby DK-2800 Denmark
| |
Collapse
|