1
|
Zhu J, Lee WH, Yip KC, Wu Z, Wu J, Leaw CP, Lim PT, Lu CK, Chan LL. Regional comparison on ciguatoxicity, hemolytic activity, and toxin profile of the dinoflagellate Gambierdiscus from Kiribati and Malaysia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162236. [PMID: 36791857 DOI: 10.1016/j.scitotenv.2023.162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The dinoflagellates Gambierdiscus and Fukuyoa can produce Ciguatoxins (CTXs) and Maitotoxins (MTXs) that lead to ciguatera poisoning (CP). The CP hotspots, however, do not directly relate to the occurrence of the ciguatoxic Gambierdiscus and Fukuyoa. Species-wide investigations often showed no association between CTX level and the molecular identity of the dinoflagellates. In the Pacific region, Kiribati is known as a CP hotspot, while Malaysia has only three CP outbreaks reported thus far. Although ciguatoxic strains of Gambierdiscus were isolated from both Kiribati and Malaysia, no solid evidence on the contribution of ciguatoxic strains to the incidence of CP outbreak was recorded. The present study aims to investigate the regional differences in CP risks through region-specific toxicological assessment of Gambierdiscus and Fukuyoa. A total of 19 strains of Gambierdiscus and a strain of Fukuyoa were analyzed by cytotoxicity assay of the neuro-2a cell line, hemolytic assay of fish erythrocytes, and high-resolution mass spectrometry. Gambierdiscus from both Kiribati and Malaysia showed detectable ciguatoxicity; however, the Kiribati strains were more hemolytic. Putative 44-methylgambierone was identified as part of the contributors to the hemolytic activity, and other unknown hydrophilic toxins produced can be potentially linked to higher CP incidence in Kiribati.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ki Chun Yip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia
| | - Chung Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Li J, Ruan Y, Wu R, Cui Y, Shen J, Mak YL, Wang Q, Zhang K, Yan M, Wu J, Lam PKS. Occurrence, spatial distribution, and partitioning behavior of marine lipophilic phycotoxins in the Pearl River Estuary, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119875. [PMID: 35926733 DOI: 10.1016/j.envpol.2022.119875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, spatial distribution, and partitioning behavior of 17 marine lipophilic phycotoxins (MLPs) in surface and bottom seawater, particulate organic matter (POM), and surface sediment from the Pearl River Estuary (PRE) were investigated to understand current contamination and the potential risks to marine ecosystems in this region. Nine MLPs were detected, including azaspiracid1-3, gymnodimine, okadaic acid, dinophysistoxin 1-2, pectenotoxin2 (PTX2), and homoyessotoxin, with Σ17MLP concentrations ranging 545-12,600 pg L-1 and 619-8,800 pg L-1 in surface and bottom seawater, respectively; 0-294 ng g-1 and 0.307-300 ng g-1 dry weight (dw) in surface and bottom POM, respectively; and 3.90-982 pg g-1 dw in surface sediment. Lower Σ17MLP levels in the seawater were found at the mouth of the PRE, and gradually increased with increasing distance offshore. According to the calculated partition coefficient, the affinity of MLPs for the aquatic environment components was as follows (from highest to lowest): POM > seawater > sediment. Overall, the distribution and migration of MLPs in the PRE may depend on partition coefficients, the organic carbon fraction, and environmental factors.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Yongsheng Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jincan Shen
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Key Laboratory of Detection Technology R & D on Food Safety, Shenzhen Academy of Inspection Quarantine, Shenzhen, 518026, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Hong Kong SAR, China
| |
Collapse
|
3
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
4
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
5
|
Liang Y, Li A, Chen J, Tan Z, Tong M, Liu Z, Qiu J, Yu R. Progress on the investigation and monitoring of marine phycotoxins in China. HARMFUL ALGAE 2022; 111:102152. [PMID: 35016765 DOI: 10.1016/j.hal.2021.102152] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin β-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.
Collapse
Key Words
- AZAs, azaspiracids
- Abbreviations: ASP, amnesic shellfish poisoning
- Animal seafood
- BMAA, β-N-methylamino-L-alanine
- CFP, ciguatera fish poisoning
- CIs, cyclic imines
- CTXs, ciguatoxins
- Coastal waters of China
- DA, domoic acid
- DSP, diarrhetic shellfish poisoning
- DTX1, dinophysistoxin-1
- DTX2, dinophysistoxin-2
- DTXs, dinophysistoxins
- ELISA, enzyme-linked immunosorbent assay
- FJ, Fujian
- GD, Guangdong
- GX, Guangxi
- GYM, gymnodimine
- HB, Hebei
- HN, Hainan
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- JS, Jiangsu
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- LMTs, lipophilic marine toxins
- LN, Liaoning
- LOD, limit of detection
- LOQ, limit of quantitation
- MBA, mouse bioassay
- Marine phycotoxins
- NSP, neurotoxic shellfish poisoning
- OA, okadaic acid
- PLTXs, palytoxins
- PSP, paralytic shellfish poisoning
- PTX2, pectenotoxin-2
- PbTXs, brevetoxins
- SD, Shandong
- SPATT, solid phase adsorbent toxin tracking
- SPE, solid phase extraction
- SPX1, 13-desmethyl spirolide C
- STXs, saxitoxins
- TTXs, tetrodotoxins
- Toxin analysis
- YTXs, yessotoxins
- ZJ, Zhejiang
- hYTX, 1-homoyessotoxin
Collapse
Affiliation(s)
- Yubo Liang
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Zhao Liu
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Gu H, Wu Y, Lü S, Lu D, Tang YZ, Qi Y. Emerging harmful algal bloom species over the last four decades in China. HARMFUL ALGAE 2022; 111:102059. [PMID: 35016757 DOI: 10.1016/j.hal.2021.102059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/14/2023]
Abstract
The first recorded micro-algae bloom in Chinese coastal waters dates back to 1933 and was caused by a mixture of Noctiluca scintillans and Skeletonema costatum sensu lato along the Zhejiang coast (the East China Sea). While well-documented harmful algal blooms (HABs) appeared to be extremely scarce from the 1950s to 1990, both the frequency and intensity have been reportedly increasing since 1990. Among them, the fish-killing HABs, mainly caused by Karenia mikimotoi, Karlodinium digitatum, Karlodinium veneficum, Margalefidinium polykrikoides, and Heterocapsa spp., have intensified. Karenia mikimotoi was responsible for at least two extremely serious events in the Pearl River Estuary in 1998 and the Taiwan Strait (in the East China Sea) in 2012, which appeared to be associated with abnormal climate conditions and excessive nutrients loading. Other major toxic algal blooms have been caused by the species responsible for paralytic shellfish poisoning (including Alexandrium catenella, Alexandrium pacificum, Gymnodinium catenatum) and diarrhetic shellfish poisoning (including Dinophysis spp., and a couple of benthic dinoflagellates). Consequent closures of shellfish farms have resulted in enormous economic losses, while consumption of contaminated shellfish has led to occasional human mortality in the Bohai Sea and the East China Sea. Expansions of these HABs species along the coastline of China have occurred over the last four decades and, due to the projected global changes in the climate and marine environments and other anthropological activities, there is potential for the emergence of new types of HABs in China in the future. This literature review aimed to present an updated overview of HABs species over the last four decades in China.
Collapse
Affiliation(s)
- Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Straits, Ministry of Natural Resources, Xiamen 361005, China
| | - Yiran Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Songhui Lü
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Douding Lu
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yuzao Qi
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Li Z, Park JS, Kang NS, Chomérat N, Mertens KN, Gu H, Lee KW, Kim KH, Baek SH, Shin K, Han KH, Son MH, Shin HH. A new potentially toxic dinoflagellate Fukuyoa koreansis sp. nov. (Gonyaulacales, Dinophyceae) from Korean coastal waters: Morphology, phylogeny, and effects of temperature and salinity on growth. HARMFUL ALGAE 2021; 109:102107. [PMID: 34815020 DOI: 10.1016/j.hal.2021.102107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
To clarify an unspecified toxic Gambierdiscus-like species isolated from seawaters off Jeju Island, Korea, its morphology and molecular phylogeny based on the small subunit (SSU) and partial large subunit (LSU) rRNA gene sequences were examined. Cells were narrow in ventral view and broad in lateral view with a smooth surface. The round thecal pores were evenly distributed, with an average diameter of 0.41 µm. Cell depth, width and height were 51.7 ± 4.5 μm, 43.0 ± 4.2 μm and 55.0 ± 4.7 μm, respectively, and depth-to-width (D/W) and height-to-width (H/W) ratios were 1.1 ± 0.2 μm and 1.3 ± 0.02 μm, respectively. The nucleus was located in the hypotheca. Scanning electron microscope observations revealed that the cells displayed a plate formula of Po, 4', 6'', 6c, 6s, 5''' and 2''', and transmission electron microscope observation demonstrated that the cells contained crystal-like particles. Morphological features indicated that the unspecified Korean isolate belonged to the genus Fukuyoa, and based on the H/W and D/W ratios, the apical pore H/W ratio and thecal pore size, it could be differentiated from other Fukuyoa species. The phylogenetic analyses based on the SSU and LSU rRNA sequences revealed that the Korean isolate was nested within the genus Fukuyoa with high support, and it grouped with F. cf. yasumotoi isolated from Japan. Based on the morpho-molecular data, a new species, Fukuyoa koreansis sp. nov. is proposed. The maximum growth rate (0.254 d-1) of F. koreansis was observed at 25°C and a salinity of 25. The required levels of temperature and salinity for growth distinguished Fukuyoa koreansis from Gambierdiscus species.
Collapse
Affiliation(s)
- Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Nam Seon Kang
- Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | | | | | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kyun-Woo Lee
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science & Technology, Republic of Korea
| | - Ki Hyun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Seung Ho Baek
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyoungsoon Shin
- Ballast Water Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyong Ha Han
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Moon Ho Son
- National Institute of Fisheries Science, Busan, 619-705, Republic of Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
8
|
Xu Y, He X, Lee WH, Chan LL, Lu D, Wang P, Tao X, Li H, Yu K. Ciguatoxin-Producing Dinoflagellate Gambierdiscus in the Beibu Gulf: First Report of Toxic Gambierdiscus in Chinese Waters. Toxins (Basel) 2021; 13:toxins13090643. [PMID: 34564646 PMCID: PMC8473099 DOI: 10.3390/toxins13090643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ciguatera poisoning is mainly caused by the consumption of reef fish that have accumulated ciguatoxins (CTXs) produced by the benthic dinoflagellates Gambierdiscus and Fukuyoa. China has a long history of problems with ciguatera, but research on ciguatera causative organisms is very limited, especially in the Beibu Gulf, where coral reefs have been degraded significantly and CTXs in reef fish have exceeded food safety guidelines. Here, five strains of Gambierdiscus spp. were collected from Weizhou Island, a ciguatera hotspot in the Beibu Gulf, and identified by light and scanning electron microscopy and phylogenetic analyses based on large and small subunit rDNA sequences. Strains showed typical morphological characteristics of Gambierdiscus caribaeus, exhibiting a smooth thecal surface, rectangular-shaped 2′, almost symmetric 4″, and a large and broad posterior intercalary plate. They clustered in the phylogenetic tree with G. caribaeus from other locations. Therefore, these five strains belonged to G. caribaeus, a globally distributed Gambierdiscus species. Toxicity was determined through the mouse neuroblastoma assay and ranged from 0 to 5.40 fg CTX3C eq cell−1. The low level of toxicity of G. caribaeus in Weizhou Island, with CTX-contaminated fish above the regulatory level in the previous study, suggests that the long-term presence of low toxicity G. caribaeus might lead to the bioaccumulation of CTXs in fish, which can reach dangerous CTX levels. Alternatively, other highly-toxic, non-sampled strains could be present in these waters. This is the first report on toxic Gambierdiscus from the Beibu Gulf and Chinese waters and will provide a basis for further research determining effective strategies for ciguatera management in the area.
Collapse
Affiliation(s)
- Yixiao Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xilin He
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Wai Hin Lee
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Leo Lai Chan
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xiaoping Tao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Huiling Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
9
|
Habibi N, Uddin S, Bottein MYD, Faizuddin M. Ciguatera in the Indian Ocean with Special Insights on the Arabian Sea and Adjacent Gulf and Seas: A Review. Toxins (Basel) 2021; 13:525. [PMID: 34437396 PMCID: PMC8402595 DOI: 10.3390/toxins13080525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The dinoflagellates of the genus Gambierdiscus are found in almost all oceans and seas between the coordinates 35° N and 35° S. Gambierdiscus and Fukuyoa are producers of ciguatoxins (CTXs), which are known to cause foodborne disease associated with contaminated seafood. The occurrence and effects of CTXs are well described in the Pacific and the Caribbean. However, historically, their properties and presence have been poorly documented in the Indian Ocean (including the Bay of Bengal, Andaman Sea, and the Gulf). A higher occurrence of these microorganisms will proportionately increase the likelihood of CTXs entering the food chain, posing a severe threat to human seafood consumers. Therefore, comprehensive research strategies are critically important for developing effective monitoring and risk assessments of this emerging threat in the Indian Ocean. This review presents the available literature on ciguatera occurrence in the region and its adjacent marginal waters: aiming to identify the data gaps and vectors.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | | | - Mohd Faizuddin
- Gulf Geoinformation Solutions, Sharjah, United Arab Emirates;
| |
Collapse
|
10
|
Li J, Ruan Y, Mak YL, Zhang X, Lam JCW, Leung KMY, Lam PKS. Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8829-8838. [PMID: 34142818 DOI: 10.1021/acs.est.1c01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Office of the President, The Open University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| |
Collapse
|
11
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
12
|
Liu Z, Liao R, Ma H, Li J, Leung PTY, Yan M, Gu J. Classification of marine microalgae using low-resolution Mueller matrix images and convolutional neural network. APPLIED OPTICS 2020; 59:9698-9709. [PMID: 33175806 DOI: 10.1364/ao.405427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we used a convolutional neural network to study the classification of marine microalgae by using low-resolution Mueller matrix images. Mueller matrix images of 12 species of algae from 5 families were measured by a Mueller matrix microscopy with an LED light source at 514 nm wavelength. The data sets of seven resolution levels were generated by the bicubic interpolation algorithm. We conducted two groups of classification experiments; one group classified the algae into 12 classes according to species category, and the other group classified the algae into 5 classes according to family category. In each group of classification experiments, we compared the classification results of the Mueller matrix images with those of the first element (M11) images. The classification accuracy of Mueller matrix images declines gently with the decrease of image resolution, while the accuracy of M11 images declines sharply. The classification accuracy of Mueller matrix images is higher than that of M11 images at each resolution level. At the lowest resolution level, the accuracy of 12-class classification and 5-class classification of full Mueller matrix images is 29.89% and 35.83% higher than those of M11 images, respectively. In addition, we also found that the polarization information of different species had different contributions to the classification. These results show that the polarization information can greatly improve the classification accuracy of low-resolution microalgal images.
Collapse
|
13
|
Tudó À, Toldrà A, Rey M, Todolí I, Andree KB, Fernández-Tejedor M, Campàs M, Sureda FX, Diogène J. Gambierdiscus and Fukuyoa as potential indicators of ciguatera risk in the Balearic Islands. HARMFUL ALGAE 2020; 99:101913. [PMID: 33218439 DOI: 10.1016/j.hal.2020.101913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Gambierdiscus and Fukuyoa are genera of toxic dinoflagellates which were mainly considered as endemic to marine intertropical areas, and that are well known as producers of ciguatoxins (CTXs) and maitotoxins (MTXs). Ciguatera poisoning (CP) is a human poisoning occurring after the consumption of fish or more rarely, shellfish containing CTXs. The presence of these microalgae in a coastal area is an indication of potential risk of CP. This study assesses the risk of CP in the Balearic Islands (Western Mediterranean Sea) according to the distribution of both microalgae genera, and the presence of CTX-like and MTX-like toxicity in microalgal cultures as determined by neuro-2a cell based-assay (neuro-2a CBA). Genetic identification of forty-three cultured microalgal strains isolated from 2016 to 2019 revealed that all of them belong to the species G. australes and F. paulensis. Both species were widely distributed in Formentera, Majorca and Minorca. Additionally, all strains of G. australes and two of F. paulensis exhibited signals of CTX-like toxicity ranging respectively between 1 and 380 and 8-16 fg CTX1B equivalents (equiv.) • cell-1. Four extracts of F. paulensis exhibited a novel toxicity response in neuro-2a cells consisting of the recovery of the cell viability in the presence of ouabain and veratridine. In addition, G. australes showed MTX-like toxicity while F. paulensis strains did not. Overall, the low CTX-like toxicities detected indicate that the potential risk of CP in the Balearic Islands is low, although, the presence of CTX-like and MTX-like toxicity in those strains reveal the necessity to monitor these genera in the Mediterranean Sea.
Collapse
Affiliation(s)
- Àngels Tudó
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain; Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C/St. Llorenç 21, E-43201, Reus (Tarragona), Spain
| | - Anna Toldrà
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Maria Rey
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Irene Todolí
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Karl B Andree
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | | | - Mònica Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C/St. Llorenç 21, E-43201, Reus (Tarragona), Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
14
|
Li X, Yan M, Gu J, Lam VTT, Wai TC, Baker DM, Thompson PD, Yiu SKF, Lam PKS, Leung PTY. The effect of temperature on physiology, toxicity and toxin content of the benthic dinoflagellate Coolia malayensis from a seasonal tropical region. WATER RESEARCH 2020; 185:116264. [PMID: 32791455 DOI: 10.1016/j.watres.2020.116264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Coolia malayensis is one of the commonly found benthic dinoflagellates in Hong Kong which can produce biotoxins and threaten the early life stages of marine invertebrates. Seawater temperature has been recognized as one of the primary environmental factors that affect the formation of harmful algal blooms. The present study evaluated the responses of C. malayensis, including growth, toxicity and toxin content (putative analogues of okadaic acid and azaspiracids), after exposure to a range of seven different temperatures (i.e., 16°C, 18°C, 20°C, 22°C, 24°C, 26°C, and 28°C). The highest algal density and specific growth rate were recorded at 24°C. Significantly higher Fv/Fm (maximum quantum yield of PSII) and total phaeo-pigment values were observed in the exponential growth phase at 28°C. The toxicity of the algal extract, which was assessed by the lethality rate of Artemia larvae, increased with temperature. The highest toxin content was detected at the second highest temperature treatment, i.e., 26°C. Overall, temperature had significant effects on the physiological activities and toxicity of C. malayensis. This study has raised attention to the potentially increasing risks posed by toxic benthic dinoflagellates during heat waves in coastal waters.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Tak-Cheung Wai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - David M Baker
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Philip D Thompson
- The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Sam K F Yiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
15
|
Pisapia F, Sibat M, Watanabe R, Roullier C, Suzuki T, Hess P, Herrenknecht C. Characterization of maitotoxin-4 (MTX4) using electrospray positive mode ionization high-resolution mass spectrometry and UV spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8859. [PMID: 32530533 DOI: 10.1002/rcm.8859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The dinoflagellate genera Gambierdiscus and Fukuyoa are producers of toxins responsible for Ciguatera Poisoning (CP). Although having very low oral potency, maitotoxins (MTXs) are very toxic following intraperitoneal injection and feeding studies have shown they may accumulate in fish muscle. To date, six MTX congeners have been described but two congeners (MTX2 and MTX4) have not yet been structurally elucidated. The aim of the present study was to further characterize MTX4. METHODS Chemical analysis was performed using liquid chromatography coupled to a diode-array detector (DAD) and positive ion mode high-resolution mass spectrometry (LC/HRMS) on partially purified extracts of G. excentricus (strain VGO792). HRMS/MS studies were also carried out to tentatively explain the fragmentation pathways of MTX and MTX4. RESULTS The comparison of UV and HRMS (ESI+ ) spectra between MTX and MTX4 led us to propose the elemental formula of MTX4 (C157 H241 NO68 S2 , as the unsalted molecule). The comparison of the theoretical and measured m/z values of the doubly charged ions of the isotopic profile in ESI+ were coherent with the proposed elemental formula of MTX4. The study of HRMS/MS spectra on the tri-ammoniated adduct ([M - H + 3NH4 ]2+ ) of both molecules gave additional information about structural features. The cleavage observed, probably located at C99 -C100 in both MTX and MTX4, highlighted the same A-side product ion shared by the two molecules. CONCLUSIONS All these investigations on the characterization of MTX4 contribute to highlighting that MTX4 belongs to the same structural family of MTXs. However, to accomplish a complete structural elucidation of MTX4, an NMR-based study and LC/HRMSn investigation will have to be carried out.
Collapse
Affiliation(s)
| | - Manoëlla Sibat
- Ifremer, DYNECO, Rue de l'Île d'Yeu, Nantes, 44311, France
| | - Ryuichi Watanabe
- NRIFS, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Catherine Roullier
- MMS EA2160, Faculté de Pharmacie, Université de Nantes, 9 rue Bias, Nantes, 44035, France
| | - Toshiyuki Suzuki
- NRIFS, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Philipp Hess
- Ifremer, DYNECO, Rue de l'Île d'Yeu, Nantes, 44311, France
| | - Christine Herrenknecht
- MMS EA2160, Faculté de Pharmacie, Université de Nantes, 9 rue Bias, Nantes, 44035, France
| |
Collapse
|
16
|
L’Herondelle K, Talagas M, Mignen O, Misery L, Le Garrec R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020; 9:E2291. [PMID: 33066435 PMCID: PMC7602189 DOI: 10.3390/cells9102291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.
Collapse
Affiliation(s)
- Killian L’Herondelle
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| | - Matthieu Talagas
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Olivier Mignen
- University of Brest, School of Medicine, INSERM U1227, Lymphocytes B et auto-immunité, F-29200 Brest, France;
| | - Laurent Misery
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaele Le Garrec
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| |
Collapse
|
17
|
Murray JS, Nishimura T, Finch SC, Rhodes LL, Puddick J, Harwood DT, Larsson ME, Doblin MA, Leung P, Yan M, Rise F, Wilkins AL, Prinsep MR. The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp. HARMFUL ALGAE 2020; 97:101853. [PMID: 32732047 DOI: 10.1016/j.hal.2020.101853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Ciguatera fish poisoning (CFP) is prevalent around the tropical and sub-tropical latitudes of the world and impacts many Pacific island communities intrinsically linked to the reef system for sustenance and trade. While the genus Gambierdiscus has been linked with CFP, it is commonly found on tropical reef systems in microalgal assemblages with other genera of toxin-producing, epiphytic and/or benthic dinoflagellates - Amphidinium, Coolia, Fukuyoa, Ostreopsis and Prorocentrum. Identifying a biomarker compound that can be used for the early detection of Gambierdiscus blooms, specifically in a mixed microalgal community, is paramount in enabling the development of management and mitigation strategies. Following on from the recent structural elucidation of 44-methylgambierone, its potential to contribute to CFP intoxication events and applicability as a biomarker compound for Gambierdiscus spp. was investigated. The acute toxicity of this secondary metabolite was determined by intraperitoneal injection using mice, which showed it to be of low toxicity, with an LD50 between 20 and 38 mg kg-1. The production of 44-methylgambierone by 252 marine microalgal isolates consisting of 90 species from 32 genera across seven classes, was assessed by liquid chromatography-tandem mass spectrometry. It was discovered that the production of this secondary metabolite was ubiquitous to the eight Gambierdiscus species tested, however not all isolates of G. carpenteri, and some species/isolates of Coolia and Fukuyoa.
Collapse
Affiliation(s)
- J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand; School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | | | - Sarah C Finch
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | | | | | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Michaela E Larsson
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
| | - Priscilla Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Alistair L Wilkins
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Michèle R Prinsep
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| |
Collapse
|
18
|
Neves RAF, Pardal MA, Nascimento SM, Silva A, Oliveira PJ, Rodrigues ET. High sensitivity of rat cardiomyoblast H9c2(2-1) cells to Gambierdiscus toxic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105475. [PMID: 32325308 DOI: 10.1016/j.aquatox.2020.105475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Ciguatera fish poisoning is a frequently reported non-bacterial food-borne illness related to the consumption of seafood contaminated with ciguatoxins, and possibly maitotoxins. These toxins are synthesized by marine dinoflagellate species of Gambierdiscus and Fukuyoa genera, and their abundance is a matter of great concern due to their adverse effects to aquatic life and human health. The present study aims to assess the sensitivity of rat cardiomyoblast H9c2(2-1) cells to Gambierdiscus toxic compounds using concentration- and time-dependent sulforhodamine B (SRB) colorimetric assays. Low concentrations of Gambierdiscus extracts (corresponding to 1.3-2.3 cells mL-1) induced a concentration-dependent response. Specificity in time-dependent response of H9c2(2-1) cells was demonstrated for G. excentricus after a 180 min exposure compared to both G. cf. belizeanus and G. silvae species, with EC50s obtained after 720 and 360 min, respectively. The sensitivity of H9c2(2-1) cells to dinoflagellate toxic compounds was also tested with other genera from benthic (Coolia malayensis, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and P. lima) and planktonic (Amphidinium carterae and Lingulodinium polyedrum) habitats. Amphidinium, Coolia and Lingulodinium data did not present any concentration-response relationships, and EC50 values could only be obtained after 720 and 1440 min of exposure to both Prorocentrum species and O. cf. ovata, respectively. This study demonstrated that the H9c2(2-1) SRB assay represents a promising and sensitive tool for the detection of Gambierdiscus toxic compounds present in water samples, particularly of G. excentricus at very low cell abundances.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-307, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-307, 22290-240, Rio de Janeiro, Brazil.
| | - Alexandra Silva
- Phytoplankton Laboratory, Division of Oceanography and Environment, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisboa, Portugal.
| | - Paulo J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra Biotech Building, Lot 8A, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
19
|
Yan M, Leung PTY, Gu J, Lam VTT, Murray JS, Harwood DT, Wai TC, Lam PKS. Hemolysis associated toxicities of benthic dinoflagellates from Hong Kong waters. MARINE POLLUTION BULLETIN 2020; 155:111114. [PMID: 32469761 DOI: 10.1016/j.marpolbul.2020.111114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Benthic dinoflagellates produce a diverse range of phycotoxins, which are responsible for intoxication events in marine fauna. This study assessed the hemolysis associated toxicities of six species of benthic dinoflagellates from the genera Coolia, Fukuyoa, Amphidinium and Prorocentrum. Results demonstrated that Amphidinium carterae, Coolia tropicalis and Fukuyoa ruetzleri were the three most toxic species, while Prorocentrum cf. lima did not have significant hemolytic effect. Grouper samples (Cephalopholis boenak) were more tolerant to the hemolytic algae than the blackhead seabream (Acanthopagrus schlegelii), with decreased heart rate and blood flow being observed in medaka larvae after exposure to toxic algal extracts. LC-MS/MS analysis detected a gambierone analogue called 44-methylgambierone produced by the C. tropicalis isolate. This analogue was also detected in the F. ruetzleri isolate. This study provided new information on the hemolysis associated toxicities of local toxic benthic dinoflagellates, which contributes to better understanding of their emerging threats to marine fauna and reef systems in Hong Kong.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - J Sam Murray
- Cawthron Institute, Nelson, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Nelson, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Tak-Cheung Wai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Li J, Mak YL, Chang YH, Xiao C, Chen YM, Shen J, Wang Q, Ruan Y, Lam PKS. Uptake and Depuration Kinetics of Pacific Ciguatoxins in Orange-Spotted Grouper ( Epinephelus coioides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4475-4483. [PMID: 32142610 DOI: 10.1021/acs.est.9b07888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ciguatoxins (CTXs), produced by toxic benthic dinoflagellates, can bioaccumulate in marine organisms at higher trophic levels. The current study evaluated the uptake and depuration kinetics of some of the most potent CTXs, Pacific CTX-1, -2, and -3 (P-CTX-1, -2, and -3), in orange-spotted grouper (Epinephelus coioides) exposed to 1 ng P-CTXs g-1 fish daily. Over a 30 d exposure, P-CTX-1, -2, and -3 were consistently detected in various tissues of exposed fish, and the concentrations of the total P-CTXs in tissues generally ranked following the order of liver, intestine, gill, skin, brain, and muscle. Relatively higher uptake rates of P-CTX-1 in the groupers were observed compared with those of P-CTX-2 and -3. The depuration rate constants of P-CTX-1, -2, and -3 in different tissues were (0.996-16.5) × 10-2, (1.51-16.1) × 10-2, and (0.557-10.6) × 10-2 d-1, respectively. The accumulation efficiencies of P-CTX-1, -2, and -3 in whole groupers were 6.13%, 2.61%, and 1.15%, respectively. The increasing proportion of P-CTX-1 and the decreasing proportion of P-CTX-2 and -3 over the exposure phase suggest a likely biotransformation of P-CTX-2 and -3 to P-CTX-1, leading to higher levels of P-CTX-1 in fish and possibly a higher risk of CTXs in long-term exposed fish.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Yu-Han Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Key Laboratory of Detection Technology R & D on Food Safety, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jincan Shen
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Key Laboratory of Detection Technology R & D on Food Safety, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
21
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
22
|
Tester PA, Litaker RW, Berdalet E. Climate change and harmful benthic microalgae. HARMFUL ALGAE 2020; 91:101655. [PMID: 32057343 DOI: 10.1016/j.hal.2019.101655] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sea surface temperatures in the world's oceans are projected to warm by 0.4-1.4 °C by mid twenty-first century causing many tropical and sub-tropical harmful dinoflagellate genera like Gambierdiscus, Fukuyoa and Ostreopsis (benthic harmful algal bloom species, BHABs) to exhibit higher growth rates over much of their current geographic range, resulting in higher population densities. The primary exception to this trend will be in the tropics where temperatures exceed species-specific upper thermal tolerances (30-31 °C) beyond which growth slows significantly. As surface waters warm, migration to deeper habitats is expected to provide refuge. Range extensions of several degrees of latitude also are anticipated, but only where species-specific habitat requirements can be met (e.g., temperature, suitable substrate, low turbulence, light, salinity, pH). The current understanding of habitat requirements that determine species distributions are reviewed to provide fuller understanding of how individual species will respond to climate change from the present to 2055 while addressing the paucity of information on environmental factors controlling small-scale distribution in localized habitats. Based on the available information, we hypothesized how complex environmental interactions can influence abundance and potential range extensions of BHAB species in different biogeographic regions and identify sentinel sites appropriate for long-term monitoring programs to detect range extensions and reduce human health risks.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Reñé A, Hoppenrath M. Psammodinium inclinatum gen. nov. et comb. nov. (=Thecadinium inclinatum Balech) is the closest relative to the toxic dinoflagellate genera Gambierdiscus and Fukuyoa. HARMFUL ALGAE 2019; 84:161-171. [PMID: 31128800 DOI: 10.1016/j.hal.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7" 7c 7s? 5"' 1p 2"" with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.
Collapse
Affiliation(s)
- Albert Reñé
- Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Mona Hoppenrath
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| |
Collapse
|