1
|
Song Z, Zhang Y, Wei G, Zhang M, Sui L, Li J, Chen L. Lateral flow chromatography strip system for rapid fluorescence determination of phycocyanin in water samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135927. [PMID: 39307019 DOI: 10.1016/j.jhazmat.2024.135927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Phycocyanin (PC) is of great significance to biomedicine and water environmental safety. Hence, it is indispensable to develop facile and rapid method for PC determination. In this investigation, a system containing lateral flow chromatography (LFC) strip (which was deposited with molecularly imprinted polymer (MIP) capped CdTe quantum dots (QDs) based mesoporous structured coated silica nanoparticles, SiO2@QDs@ms-MIP NPs) and miniaturized fluorimeter was first fabricated. In detail, a two-step strategy was utilized for preparation of SiO2@QDs@ms-MIP NPs, which consisted of modification of CdTe QDs onto the silica NPs first, and synthesis of mesoporous imprinting shell by using PC as template molecule and cetyltrimethylammonium bromide (CTAB) as surfactant. After that, novel fluorescence NPs possessing specific recognition and sensitivity toward PC in seawater and lake water were acquired. The resulting fluorescent sensing system exhibited outstanding performances, which included excellent sensitivity (4.5 nmol/L), satisfactory specificity (imprinting factor, 2.31), appropriate linearity range (0.01-5 μmol/L), good recovery (96.0-101.7 %), excellent stability (relative standard deviation, RSD<1.1 %), wonderful reproducibility (RSD<1.1 %), and excellent anti-interference ability. The results of the fluorescent sensing system were superior to those of the commonly used ultraviolet (UV) method. The proposed strategy showed great potential for fast (<10 min) and convenient fluorescence detection of PC in real samples.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Yimeng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Guo Wei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Mingxuan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Lei Sui
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Levi EE, Jeppesen E, Nejstgaard JC, Davidson TA. Chlorophyll-a determinations in mesocosms under varying nutrient and temperature treatments: in-situ fluorescence sensors versus in-vitro measurements. OPEN RESEARCH EUROPE 2024; 4:69. [PMID: 38915372 PMCID: PMC11195624 DOI: 10.12688/openreseurope.17146.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 06/26/2024]
Abstract
Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r 2 < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings. Nevertheless, corroborating these data with in-vitro Chla assessments would provide additional validation for the early warnings provided by sensor data.
Collapse
Affiliation(s)
- Eti Ester Levi
- Department of Ecoscience & WATEC, Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Erik Jeppesen
- Department of Ecoscience & WATEC, Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation (EKOSAM), Middle East Technical University, Ankara, 06800, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, 33731, Turkey
- Sino-Danish Centre for Education and Research, University of the Chinese Academy of Sciences, Beijing, 100190, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jens C. Nejstgaard
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, 16775, Germany
| | | |
Collapse
|
3
|
Sasi Rekha V, Sankar K, Rajaram S, Karuppiah P, Dawoud TMS, Syed A, Elgorban AM. Unveiling the impact of additives on structural integrity, thermal and color stability of C-phycocyanin - Agar hydrocolloid. Food Chem 2024; 448:139000. [PMID: 38547706 DOI: 10.1016/j.foodchem.2024.139000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/24/2024]
Abstract
C-Phycocyanin and sugar (C-PC/S) blended agar hydrocolloid was prepared and its rheological, thermo-functional and morphological properties were examined based on the fluorescence excitation-emission matrix profile. Sucrose (40%, w/v) determined as a superior preservative, maintaining the native conformation of C-PC effectively. C-PC/S exhibited enhanced structural integrity with high storage modulus (G') and 86.4% swelling index. FT-IR demonstrated strong intramolecular bonding. TGA revealed that the presence of sucrose prolonged the devolatilization peak up to 325 °C, with a degradation rate of -2.273 mg/min, it the thermal stability. C-PC/S fortified hydrocolloid in ice cream (5.0% w/w), reduced melting rate up to five times. In conclusion, sucrose as a promising enhancer of color stability and structural integrity for C-PC, and this combination effectively improves the functional and rheological properties. Further, the findings exposed the agar hydrocolloid as a potential enhancer of color retention and improved performance for various food and cosmetic products.
Collapse
Affiliation(s)
- V Sasi Rekha
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Karthikumar Sankar
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India.
| | - Shyamkumar Rajaram
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, K.Vellakulam, 625701, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia.
| | - Turkey M S Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box - 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Goblirsch T, Mayer T, Penzel S, Rudolph M, Borsdorf H. In Situ Water Quality Monitoring Using an Optical Multiparameter Sensor Probe. SENSORS (BASEL, SWITZERLAND) 2023; 23:9545. [PMID: 38067918 PMCID: PMC10708653 DOI: 10.3390/s23239545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/25/2024]
Abstract
Optical methods such as ultraviolet/visible (UV/Vis) and fluorescence spectroscopy are well-established analytical techniques for in situ water quality monitoring. A broad range of bio-logical and chemical contaminants in different concentration ranges can be detected using these methods. The availability of results in real time allows a quick response to water quality changes. The measuring devices are configured as portable multi-parameter probes. However, their specification and data processing typically cannot be changed by users, or only with difficulties. Therefore, we developed a submersible sensor probe, which combines UV/Vis and fluorescence spectroscopy together with a flexible data processing platform. Due to its modular design in the hardware and software, the sensing system can be modified to the specific application. The dimension of the waterproof enclosure with a diameter of 100 mm permits also its application in groundwater monitoring wells. As a light source for fluorescence spectroscopy, we constructed an LED array that can be equipped with four different LEDs. A miniaturized deuterium-tungsten light source (200-1100 nm) was used for UV/Vis spectroscopy. A miniaturized spectrometer with a spectral range between 225 and 1000 nm permits the detection of complete spectra for both methods.
Collapse
Affiliation(s)
- Tobias Goblirsch
- UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany; (T.M.); (H.B.)
| | - Thomas Mayer
- UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany; (T.M.); (H.B.)
| | - Stefanie Penzel
- Faculty of Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany; (S.P.); (M.R.)
| | - Mathias Rudolph
- Faculty of Engineering, Leipzig University of Applied Sciences (HTWK Leipzig), Karl-Liebknecht-Straße 134, 04277 Leipzig, Germany; (S.P.); (M.R.)
| | - Helko Borsdorf
- UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany; (T.M.); (H.B.)
| |
Collapse
|
5
|
Zhao H, Zhou Y, Wu H, Kutser T, Han Y, Ma R, Yao Z, Zhao H, Xu P, Jiang C, Gu Q, Ma S, Wu L, Chen Y, Sheng H, Wan X, Chen W, Chen X, Bai J, Wu L, Liu Q, Sun W, Yang S, Hu M, Liu C, Liu D. Potential of Mie-Fluorescence-Raman Lidar to Profile Chlorophyll a Concentration in Inland Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14226-14236. [PMID: 37713595 DOI: 10.1021/acs.est.3c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Vertical distribution of phytoplankton is crucial for assessing the trophic status and primary production in inland waters. However, there is sparse information about phytoplankton vertical distribution due to the lack of sufficient measurements. Here, we report, to the best of our knowledge, the first Mie-fluorescence-Raman lidar (MFRL) measurements of continuous chlorophyll a (Chl-a) profiles as well as their parametrization in inland water. The lidar-measured Chl-a during several experiments showed good agreement with the in situ data. A case study verified that MFRL had the potential to profile the Chl-a concentration. The results revealed that the maintenance of subsurface chlorophyll maxima (SCM) was influenced by light and nutrient inputs. Furthermore, inspired by the observations from MFRL, an SCM model built upon surface Chl-a concentration and euphotic layer depth was proposed with root mean square relative difference of 16.5% compared to MFRL observations, providing the possibility to map 3D Chl-a distribution in aquatic ecosystems by integrated active-passive remote sensing technology. Profiling and modeling Chl-a concentration with MFRL are expected to be of paramount importance for monitoring inland water ecosystems and environments.
Collapse
Affiliation(s)
- Hongkai Zhao
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yudi Zhou
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongda Wu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiit Kutser
- Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn 10619, Estonia
| | - Yicai Han
- Institute of Environmental Protection Science, Hangzhou 310014, China
| | - Ronghua Ma
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Huade Zhao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Peituo Xu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengchong Jiang
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiuling Gu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shizhe Ma
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lingyun Wu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Chen
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Sheng
- Institute of Environmental Protection Science, Hangzhou 310014, China
| | - Xueping Wan
- Wuxi CAS Photonics Co., Ltd., Wuxi 214135, China
| | - Wentai Chen
- Wuxi CAS Photonics Co., Ltd., Wuxi 214135, China
| | | | - Jian Bai
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lan Wu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qun Liu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- International Research Center for Advanced Photonics, Zhejiang University, Jiaxing 314400, China
| | - Wenbo Sun
- Donghai Laboratory, Zhoushan 316021, China
| | - Suhui Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Miao Hu
- College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chong Liu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dong Liu
- Ningbo Innovation Center, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
- International Research Center for Advanced Photonics, Zhejiang University, Jiaxing 314400, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
| |
Collapse
|
6
|
Simonazzi M, Pezzolesi L, Guerrini F, Vanucci S, Graziani G, Vasumini I, Pandolfi A, Servadei I, Pistocchi R. Improvement of In Vivo Fluorescence Tools for Fast Monitoring of Freshwater Phytoplankton and Potentially Harmful Cyanobacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14075. [PMID: 36360953 PMCID: PMC9658348 DOI: 10.3390/ijerph192114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The use of multi-wavelength spectrofluorometers for the fast detection of algal taxa, based on chlorophyll a (Chl-a) emission spectra, has become a common practice in freshwater water management, although concerns about their accuracy have been raised. Here, inter-laboratory comparisons using monoalgal cultures have been performed to assess the reliability of different spectrofluorometer models, alongside Chl-a extraction methods. Higher Chl-a concentrations were obtained when using the spectrofluorometers than extraction methods, likely due to the poor extraction efficiencies of solvents, highlighting that traditional extraction methods could underestimate algal or cyanobacterial biomass. Spectrofluorometers correctly assigned species to the respective taxonomic group, with low and constant percent attribution errors (Chlorophyta and Euglenophyceae 6-8%, Cyanobacteria 0-3%, and Bacillariophyta 10-16%), suggesting that functioning limitations can be overcome by spectrofluorometer re-calibration with fresh cultures. The monitoring of a natural phytoplankton assemblage dominated by Chlorophyta and Cyanobacteria gave consistent results among spectrofluorometers and with microscopic observations, especially when cell biovolume rather than cell density was considered. In conclusion, multi-wavelength spectrofluorometers were confirmed as valid tools for freshwater monitoring, whereas a major focus on intercalibration procedures is encouraged to improve their reliability and broaden their use as fast monitoring tools to prevent environmental and public health issues related to the presence of harmful cyanobacteria.
Collapse
Affiliation(s)
- Mara Simonazzi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
| | - Laura Pezzolesi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI-FRAME), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
| | - Franca Guerrini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
| | - Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando d’Alcontres 31, 98166 Messina, Italy
| | - Giancarlo Graziani
- Romagna Acque Società delle Fonti S.p.a., Piazza Orsi Mangelli 10, 47122 Forlì, Italy
| | - Ivo Vasumini
- Romagna Acque Società delle Fonti S.p.a., Piazza Orsi Mangelli 10, 47122 Forlì, Italy
| | - Andrea Pandolfi
- Romagna Acque Società delle Fonti S.p.a., Piazza Orsi Mangelli 10, 47122 Forlì, Italy
| | - Irene Servadei
- Fondazione Centro Ricerche Marine, Viale A. Vespucci, 2, 47042 Cesenatico, Italy
| | - Rossella Pistocchi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI-FRAME), University of Bologna, Via S’Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
7
|
Pokrzywinski K, Johansen R, Reif M, Bourne S, Hammond S, Fernando B. Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a Microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts. HARMFUL ALGAE 2022; 117:102268. [PMID: 35944951 DOI: 10.1016/j.hal.2022.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Remote sensing technologies offer a consistent, spatiotemporal approach to assess water quality, which includes the detection, monitoring, and forecasting of cyanobacteria harmful algal blooms. In this study, a series of ex-situ mesoscale experiments were conducted to first develop and then monitor a Microcystis sp. bloom using a hyperspectral sensor mounted on an unmanned aircraft system (UAS) along with coincident ground sampling efforts including laboratory analyses and in-situ field probes. This approach allowed for the simultaneous evaluation of both bloom physiology (algal growth stages/life cycle) and data collection method on the performance of a suite of 41 spectrally-derived water quality algorithms across three water quality indicators (chlorophyll a, phycocyanin and turbidity) in a controlled environment. Results indicated a strong agreement between Lab and Field-based methods for all water quality indicators independent of growth phase, with regression R2-values above 0.73 for mean absolute percentage error (MAPE) and 0.87 for algorithm R2 values. Three of the 41 algorithms evaluated met predetermined performance criteria (MAPE and algorithm R2 values); however, in general, algal growth phase had a substantial impact on algorithm performance, especially those with blue and violet wave bands. This study highlights the importance of co-validating sensor technologies with appropriate ground monitoring methods to gain foundational knowledge before deploying new technologies in large-scale field efforts.
Collapse
Affiliation(s)
- Kaytee Pokrzywinski
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 101 Pivers Island Rd, NC, 28516 United States; Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States.
| | - Richard Johansen
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States.
| | - Molly Reif
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States; Joint Airborne Lidar Bathymetry Technical Center of Expertise, 7225 Stennis Airport Rd, Kiln, MS United States
| | - Scott Bourne
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States
| | - Shea Hammond
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States
| | - Brianna Fernando
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS United States
| |
Collapse
|
8
|
Automation of species-specific cyanobacteria phycocyanin fluorescence compensation using machine learning classification. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Rousso BZ, Bertone E, Stewart R, Aguiar A, Chuang A, Hamilton DP, Burford MA. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase. WATER RESEARCH 2022; 212:118127. [PMID: 35121420 DOI: 10.1016/j.watres.2022.118127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria harmful blooms can represent a major risk for public health due to potential release of toxins and other noxious compounds in the water. A continuous and high-resolution monitoring of the cyanobacteria population is required due to their rapid dynamics, which has been increasingly done using in-situ fluorescence of phycocyanin (f-PC) and chlorophyll a (f-Chl a). Appropriate in-situ fluorometers calibration is essential because f-PC and f-Chl a are affected by biotic and abiotic factors, including species composition. Measurement of f-PC and f-Chl a in mixed species assemblages during different growth phases - representative of most field conditions - has received little attention. We hypothesized that f-PC and f-Chl a of mixed assemblages of cyanobacteria may be accurately estimated if taxa composition and fluorescence characteristics are known. We also hypothesized that species with different morphologies would have different fluorescence per unit cell and biomass. We tested these hypotheses in a controlled culture experiment in which photosynthetic pigment fluorescence, chemical pigment extraction, optical density and microscopic enumeration of four common cyanobacteria species (Aphanocapsa sp, Microcystis aeruginosa, Dolichospermum circinale and Raphidiopsis raciborskii) were quantified. Both monocultures and mixed cultures were monitored from exponential to late stationary growth phases. The sum of fluorescence of individual species calculated for mixed samples was not significantly different than measured fluorescence of mixed cultures. Estimated and measured f-PC and f-Chl a of mixed cultures had higher correlations and smaller absolute median errors when estimations were based on fluorescence per biomass instead of fluorescence per cell. Largest errors were overestimations of measured fluorescence for species with different morphologies. Fluorescence per cell was significantly different among most species, while fluorescence per unit biomass was not, indicating that conversion of fluorescence to biomass reduces species-specific bias. This study presents new information on the effect of species composition on cyanobacteria fluorescence. Best practices of deployment and operation of fluorometers, and data-driven models supporting in-situ fluorometers calibration are discussed as suitable solutions to minimize taxa-specific bias in fluorescence estimates.
Collapse
Affiliation(s)
- Benny Zuse Rousso
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
| | - Edoardo Bertone
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Rodney Stewart
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
| | - Arthur Aguiar
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
| | - Ann Chuang
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
10
|
Liu J, Chang H, Zhang X, Chen S, Song Y, Li D. Living algae detection with a PDMS-liquid chlorophyll fluorescence microfluidic chip filter and a smartphone. Analyst 2022; 147:3723-3731. [DOI: 10.1039/d2an00375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PDMS-liquid chlorophyll fluorescence microfluidic chip filter for living algae detection. The filter has a top layer of crystal violet solution and a Sudan II-doped PDMS microchannel. Living algae detection with this microfluidic chip and a smartphone was achieved.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Hui Chang
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyu Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shimeng Chen
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
11
|
Khan MFS, Akbar M, Wu J, Xu Z. A review on fluorescence spectroscopic analysis of water and wastewater. Methods Appl Fluoresc 2021; 10. [PMID: 34823232 DOI: 10.1088/2050-6120/ac3d79] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
In recent years, the application of fluorescence spectroscopy has been widely recognized in water environment studies. The sensitiveness, simplicity, and efficiency of fluorescence spectroscopy are proved to be a promising tool for effective monitoring of water and wastewater. The fluorescence excitation-emission matrix (EEMs) and synchronous fluorescence spectra have been widely used analysis techniques of fluorescence measurement. The presence of organic matter in water and wastewater defines the degree and type of pollution in water. The application of fluorescence spectroscopy to characterize dissolved organic matter (DOM) has made the water quality assessment simple and easy. With the recent advances in this technology, components of DOM are identified by employing parallel factor analysis (PARAFAC), a mathematical trilinear data modeling with EEMs. The majority of wastewater studies indicated that the fluorescence peak of EX/EM at 275 nm/340 nm is referred to tryptophan region (Peak T1). However, some researchers identified another fluorescence peak in the region of EX/EM at 225-237 nm/340-381 nm, which described the tryptophan region and labeled it as Peak T2. Generally, peak T is a protein-like component in the water sample, where T1 and T2 signals were derived from the <0.20μm fraction of pollution. Therefore, a more advanced approach, such as an online fluorescence spectrofluorometer, can be used for the online monitoring of water. The results of various waters studied by fluorescence spectroscopy indicate that changes in peak T intensity could be used for real-time wastewater quality assessment and process control of wastewater treatment works. Finally, due to its effective use in water quality assessment, the fluorescence technique is proved to be a surrogate online monitoring tool and early warning equipment.
Collapse
Affiliation(s)
- Muhammad Farooq Saleem Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Mona Akbar
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.,Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215000, People's Republic of China
| | - Zhou Xu
- International Faculty of Applied Technology, Yibin City 644000, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Rousso BZ, Bertone E, Stewart RA, Rinke K, Hamilton DP. Light-induced fluorescence quenching leads to errors in sensor measurements of phytoplankton chlorophyll and phycocyanin. WATER RESEARCH 2021; 198:117133. [PMID: 33895586 DOI: 10.1016/j.watres.2021.117133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/24/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Optical sensors for fluorescence of chlorophyll a (f-Chl a) and phycocyanin (f-PC) are increasingly used as a proxy for biomass of algae and cyanobacteria, respectively. They provide measurements at high-frequency and modest cost. These sensors require site-specific calibration due to a range of interferences. Light intensity affects the fluorescence yield of cyanobacteria and algae through light harvesting regulation mechanisms, but is often neglected as a potential source of error for in-situ f-Chl a and f-PC measurements. We hypothesised that diel light variations would induce significant f-Chl a and f-PC suppression when compared to dark periods. We tested this hypothesis in a controlled experiment using three commercial fluorescence probes which continuously measured f-Chl a and f-PC from a culture of the cyanobacterium Dolichospermum variabilis as well as f-Chl a from a culture of the green alga Ankistrodesmus gracilis in a simulated natural light regime. Under light, all devices showed a significant (p<0.01) suppression of f-Chl a and f-PC compared to measurements in the dark. f-Chl a decreased by up to 79% and f-PC by up to 59% at maximum irradiance compared to dark-adapted periods. Suppression levels were higher during the second phase of the diel cycle (declining light), indicating that quenching is dependent on previous light exposure. Diel variations in light intensity must be considered as a significant source of bias for fluorescence probes used for algal monitoring. This is of high relevance as most monitoring activities take place during daytime and hence f-Chl a and f-PC are likely to be systematically underestimated under bright conditions. Compensation models, design modifications to fluorometers and sampling design are discussed as suitable alternatives to overcome light-induced fluorescence quenching.
Collapse
Affiliation(s)
- Benny Zuse Rousso
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Edoardo Bertone
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Rodney A Stewart
- Griffith School of Engineering and Built Environment, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia; Cities Research Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
| | - Karsten Rinke
- Department of Lake Research, Helmholtz, Centre for Environmental Research, Brückstraße 3A, 39114 Magdeburg, Germany
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
13
|
Ezenarro JJ, Ackerman TN, Pelissier P, Combot D, Labbé L, Muñoz-Berbel X, Mas J, Del Campo FJ, Uria N. Integrated Photonic System for Early Warning of Cyanobacterial Blooms in Aquaponics. Anal Chem 2021; 93:722-730. [PMID: 33305581 DOI: 10.1021/acs.analchem.0c00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial blooms produce hazardous toxins, deplete oxygen, and secrete compounds that confer undesirable organoleptic properties to water. To prevent bloom appearance, the World Health Organization has established an alert level between 500 and 2000 cells·mL-1, beyond the capabilities of most optical sensors detecting the cyanobacteria fluorescent pigments. Flow cytometry, cell culturing, and microscopy may reach these detection limits, but they involve both bulky and expensive laboratory equipment or long and tedious protocols. Thus, no current technology allows fast, sensitive, and in situ detection of cyanobacteria. Here, we present a simple, user-friendly, low-cost, and portable photonic system for in situ detection of low cyanobacterial concentrations in water samples. The system integrates high-performance preconcentration elements and optical components for fluorescence measurement of specific cyanobacterial pigments, that is, phycocyanin. Phycocyanin has demonstrated to be more selective to cyanobacteria than other pigments, such as chlorophyll-a, and to present an excellent linear correlation with bacterial concentration from 102 to 104 cell·mL-1 (R2 = 0.99). Additionally, the high performance of the preconcentration system leads to detection limits below 435 cells·mL-1 after 10 min in aquaponic water samples. Due to its simplicity, compactness, and sensitivity, we envision the current technology as a powerful tool for early warning and detection of low pathogen concentrations in water samples.
Collapse
Affiliation(s)
- Josune J Ezenarro
- Departament Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.,Waterologies S.L., C/Dinamarca, 3 (nave 9), Polígono Industrial Les Comes, Igualada 08700, Spain
| | - Tobias Nils Ackerman
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Pablo Pelissier
- Pisciculture Expérimentale INRA des Monts d'Arrée, E des Monts d'Arrée, Barrage du Drennec, Sizun 29 450, France
| | - Doriane Combot
- Pisciculture Expérimentale INRA des Monts d'Arrée, E des Monts d'Arrée, Barrage du Drennec, Sizun 29 450, France
| | - Laurent Labbé
- Pisciculture Expérimentale INRA des Monts d'Arrée, E des Monts d'Arrée, Barrage du Drennec, Sizun 29 450, France
| | - Xavier Muñoz-Berbel
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Jordi Mas
- Departament Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Francisco Javier Del Campo
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, Bellaterra 08193, Spain.,Pisciculture Expérimentale INRA des Monts d'Arrée, E des Monts d'Arrée, Barrage du Drennec, Sizun 29 450, France.,BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Naroa Uria
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
14
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
15
|
Thomson-Laing G, Puddick J, Wood SA. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. HARMFUL ALGAE 2020; 97:101869. [PMID: 32732055 DOI: 10.1016/j.hal.2020.101869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Toxic cyanobacterial blooms are becoming more prevalent in freshwater systems, increasing the need for monitoring to protect human health. Phycocyanin fluorescence sensors have been developed as tools for providing fast and cost-effective proxy measurements for cyanobacterial biomass. However, poor precision and low sensitivity in many of the probe sensors assessed to-date has restricted their potential for practical application in cyanobacterial monitoring programmes. In the present study, the sensitivity and accuracy of a handheld fluorometer, the CyanoFluor, was assessed using 12 cyanobacterial strains and samples from four different lakes collected weekly for 12 weeks. After the initial measurements, the samples were lysed by sonication, which we hypothesised would reduce inter and intra-specific differences. The CyanoFluor displayed high sensitivity (limit of quantification = 3.5 µg L-1 of phycocyanin) and was able to detect cyanobacterial biovolumes to levels much lower than the threshold levels in current recreational guidelines worldwide. There were strong and significant phycocyanin to biovolume relationships (r2 ≥ 0.88, P < 0.05) for all 12 cyanobacterial cultures. Collectively, strong relationships between phycocyanin fluorescence and cyanobacterial biovolumes were also identified in environmental samples (r2 ≥ 0.78, P < 0.001), although weaker relationships were identified when lakes were analysed separately (r2 = 0.06 - 0.90). There were differences in phycocyanin per biovolume between both cultured strains and lakes, highlighting innate interspecific differences that exist between cyanobacterial species. Lysis of samples consistently reduced variability between technical replicates, in cyanobacteria cultures (up to 87% reduction in sample variability) and environmental samples (71 - 93% reduction), indicating that it would be a useful methodological step to improve the repeatability of results. When guideline thresholds (aligned with currently enforced risk assessment categories) were modelled based on the most successful linear regression model, 74% of samples were assigned to the correct risk category. The sensitivity of the CyanoFluor and accuracy of the phycocyanin threshold models, indicates high potential for this method to be integrated into cyanobacterial monitoring programmes.
Collapse
Affiliation(s)
| | | | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand
| |
Collapse
|