1
|
Phua YH, Tejeda J, Roy MC, Husnik F, Wakeman KC. Bacterial communities and toxin profiles of Ostreopsis (Dinophyceae) from the Pacific Island of Okinawa, Japan. Eur J Protistol 2023; 89:125976. [PMID: 37060793 DOI: 10.1016/j.ejop.2023.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Variations in toxicity of the benthic dinoflagellate Ostreopsis Schmidt 1901 have been attributed to specific molecular clades, biogeography of isolated strains, and the associated bacterial community. Here, we attempted to better understand the biodiversity and the basic biology influencing toxin production of Ostreopsis. Nine clonal cultures were established from Okinawa, Japan, and identified using phylogenetic analysis of the ITS-5.8S rRNA and 28S rRNA genes. Morphological analysis suggests that the apical pore complex L/W ratio could be a feature for differentiating Ostreopsis sp. 2 from the O. ovata species complex. We analyzed the toxicity and bacterial communities using liquid chromatography-mass spectrometry, and PCR-free metagenomic sequencing. Ovatoxin was detected in three of the seven strains of O. cf. ovata extracts, highlighting intraspecies variation in toxin production. Additionally, two new potential analogs of ovatoxin-a and ostreocin-A were identified. Commonly associated bacteria clades of Ostreopsis were identified from the established cultures. While some of these bacteria groups may be common to Ostreopsis (Rhodobacterales, Flavobacteria-Sphingobacteria, and Enterobacterales), it was not clear from our analysis if any one or more of these plays a role in toxin biosynthesis. Further examination of biosynthetic pathways in metagenomic data and additional experiments isolating specific bacteria from Ostreopsis would aid these efforts.
Collapse
Affiliation(s)
- Yong Heng Phua
- School of Science, Hokkaido University, North 10, West 8, Sapporo, Hokkaido 060-0810, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Javier Tejeda
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Michael C Roy
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, North 10, West 8, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
2
|
Kim YS, An HJ, Kim J, Jeon YJ. Current Situation of Palytoxins and Cyclic Imines in Asia-Pacific Countries: Causative Phytoplankton Species and Seafood Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4921. [PMID: 35457784 PMCID: PMC9026528 DOI: 10.3390/ijerph19084921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.
Collapse
Affiliation(s)
- Young-Sang Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| | - Hyun-Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaeseong Kim
- Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| |
Collapse
|
3
|
Boisnoir A, Bilien G, Lemée R, Chomérat N. First insights on the diversity of the genus Ostreopsis (Dinophyceae, Gonyaulacales) in guadeloupe island, with emphasis on the phylogenetic position of O. heptagona. Eur J Protistol 2022; 83:125875. [DOI: 10.1016/j.ejop.2022.125875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/14/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022]
|
4
|
Nguyen-Ngoc L, Doan-Nhu H, Larsen J, Phan-Tan L, Nguyen XV, Lundholm N, Van Chu T, Huynh-Thi DN. Morphological and genetic analyses of Ostreopsis (Dinophyceae, Gonyaulacales, Ostreopsidaceae) species from Vietnamese waters with a re-description of the type species, O. siamensis. JOURNAL OF PHYCOLOGY 2021; 57:1059-1083. [PMID: 33650126 DOI: 10.1111/jpy.13157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Identification of species of the dinoflagellate genus Ostreopsis is difficult because several species have been poorly described, others misidentified in the literature, and the type species, O. siamensis, has not been described by contemporary taxonomic methods. In the present study, it is argued that Ostreopsis sp. 6 as described by previous authors is similar to the type species, and we offer an emended description of O. siamensis by LM, SEM, and molecular analyses of nuclear LSU and ITS rDNA based on material collected a few hundred kilometers from the type locality in the Gulf of Thailand and along the Vietnamese east coast. Ostreopsis siamensis is genetically different from the species reported as O. cf. siamensis in the literature and the latter should be described as a separate species. It is also concluded that with the poor knowledge of the morphological variability of many species of Ostreopsis, O. siamensis may not be distinguished from other similar-sized species by its morphological features, and hence molecular data are needed for reliable identification. The species Ostreopsis lenticularis and Ostreopsis cf. ovata were also found and described.
Collapse
Affiliation(s)
- Lam Nguyen-Ngoc
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Vinh Nguyen, 650000, Nha Trang, Viet Nam
| | - Hai Doan-Nhu
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Vinh Nguyen, 650000, Nha Trang, Viet Nam
| | - Jacob Larsen
- IOC Science and Communication Centre on Harmful Algae, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen Ø, Denmark
| | - Luom Phan-Tan
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Vinh Nguyen, 650000, Nha Trang, Viet Nam
| | - Xuan-Vy Nguyen
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Vinh Nguyen, 650000, Nha Trang, Viet Nam
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, Building: 7, 1353, Copenhagen K, Denmark
| | - Thuoc Van Chu
- Institute of Marine Environment and Resources, Viet Nam Academy of Science and Technology, 246 Da Nang, Hai Phong City, Viet Nam
| | - Duyen Ngoc Huynh-Thi
- Institute of Oceanography, Viet Nam Academy of Science and Technology, 01 Cau Da, Vinh Nguyen, 650000, Nha Trang, Viet Nam
| |
Collapse
|
5
|
Chomérat N, Bilien G, Viallon J, Hervé F, Réveillon D, Henry K, Zubia M, Vieira C, Ung A, Gatti CMI, Roué M, Derrien A, Amzil Z, Darius HT, Chinain M. Taxonomy and toxicity of a bloom-forming Ostreopsis species (Dinophyceae, Gonyaulacales) in Tahiti island (South Pacific Ocean): one step further towards resolving the identity of O. siamensis. HARMFUL ALGAE 2020; 98:101888. [PMID: 33129466 DOI: 10.1016/j.hal.2020.101888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.
Collapse
Affiliation(s)
- Nicolas Chomérat
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France.
| | - Gwenael Bilien
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France
| | - Jérôme Viallon
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Fabienne Hervé
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Damien Réveillon
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Kévin Henry
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mayalen Zubia
- Université de Polynésie Française, UMR 241-EIO, PO Box 6570, 98702 Faa'a, Tahiti, French Polynesia
| | - Christophe Vieira
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan
| | - André Ung
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Clémence Mahana Iti Gatti
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO, PO box 529, 98713 Papeete, Tahiti, French Polynesia
| | - Amélie Derrien
- Ifremer, LER BO, Station of Marine Biology of Concarneau, Place de la Croix, F-29900 Concarneau, France
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, BP 21105, F-44311 Nantes Cedex 3, France
| | - Hélène Taiana Darius
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| | - Mireille Chinain
- Institut Louis Malardé, Laboratoire des Micro-algues toxiques, UMR 241-EIO, PO box 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|