1
|
Sezgin R, Durmus T, Balci M, Dursun F, Balkis-Ozdelice N, Krock B, Tas S. Morpho-phylogenetic and toxicological characterisation of Pseudo-nitzschia multiseries from the Sea of Marmara (Türkiye). HARMFUL ALGAE 2025; 146:102867. [PMID: 40409870 DOI: 10.1016/j.hal.2025.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 05/25/2025]
Abstract
Pseudo-nitzschia multiseries is a diatom known for producing domoic acid (DA), a neurotoxin that can cause Amnesic Shellfish Poisoning (ASP), which poses risks to both marine life and human health. This study reports the first detailed investigation of P. multiseries in the Sea of Marmara, focusing on its morphology, phylogeny, and toxin production. Morphological analysis using light and electron microscopy confirmed key diagnostic features consistent with P. multiseries. Phylogenetic analysis, focusing on ITS and LSU gene sequences, showed a close genetic relationship between the Turkish strain and other strains of P. multiseries. Domoic acid levels, quantified using LC-MS/MS during exponential and stationary growth phases, ranged between 2.46 and 3.24 pg cell-1, with minor amounts of isoDA (A, D and E) also detected. These findings highlight the importance of monitoring P. multiseries in Turkish coastal waters due to its significant potential for DA production. This study provides valuable insights into the morphology, phylogeny, and toxin production of P. multiseries, as well as its potential implications for management of marine resources and public health protection. It offers a comprehensive examination of this potentially toxic diatom species in Turkish coastal waters.
Collapse
Affiliation(s)
- Rabia Sezgin
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, 34134, Türkiye.
| | - Turgay Durmus
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, 34134, Türkiye
| | - Muharrem Balci
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, 34134, Türkiye
| | - Fuat Dursun
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Türkiye
| | | | - Bernd Krock
- Section Ecological Chemistry, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Seyfettin Tas
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Türkiye
| |
Collapse
|
2
|
Chen Y, Ning J, Su D, Wang Y, Huang H, Chen Z, Ma Y, Liu Z. Molecular diversity and potential ecological risks of toxic HAB species in the coastal waters off Qinhuangdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126121. [PMID: 40139296 DOI: 10.1016/j.envpol.2025.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Harmful algal blooms (HABs) have occurred frequently in the coastal waters off Qinhuangdao (CWQ) of the Bohai Sea during the past two decades, with paralytic shellfish toxins frequently exceeding safe levels in recent years. However, the biodiversity of toxic HAB species remain poorly understood. Cruise observations in the CWQ of the Bohai Sea from August to November 2021 were used, to investigate the biodiversity, geographical and temporal distributions of toxic HAB species, and associated environmental factors. Through amplicon sequence variants (ASVs)-based metabarcoding analysis, 4261 ASVs of five microalgae phyla were identified in this study, of which Dinoflagellata was the most dominant phylum in most sampling sites. Consequently, 257 microalgae species were annotated in this study, in which 70 were identified as HAB species, including 33 toxic HAB species have been reported to produce toxins or potentially toxic substances. Notably, most HAB species were widely distributed in the CWQ in August to November, especially the toxic species Karlodinium veneficum. Moreover, some toxic HAB species may be distributed in the CWQ all year round, with a high risk of toxic HAB outbreak. Eight environmental factors were evaluated, and the temperature was found to be the key environmental factor influencing the distribution and seasonal variation of dominant HAB species. This research highlights the necessity for monitoring toxic HAB species for accurate prevention and mitigation of HABs.
Collapse
Affiliation(s)
- Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China.
| | - Jiaqi Ning
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Hailong Huang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo, 315211, China
| | - Zuoyi Chen
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, 066000, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China.
| |
Collapse
|
3
|
Niu B, Liang C, Lundholm N, Li A, Liu Y, Ran R, Zhang L, Li Y. Abundance of non-toxic and low-level toxic Pseudo-nitzschia explains the low levels of neurotoxin domoic acid in Chinese coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137295. [PMID: 39862770 DOI: 10.1016/j.jhazmat.2025.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Domoic acid (DA), a well-known marine neurotoxin, is produced by toxic Pseudo-nitzschia species. However, the knowledge of DA in Chinese coastal waters remains limited, and the primary biological sources in these waters are still unknown. In this study, 200 surface phytoplankton samples were collected during summer and spring, covering the entire Chinese coastline. Particulate DA (pDA) was detected in 41 samples, and among these, 34 were from summer, particularly nearshore. The peak content, 230 ng L-1, was in the southern Yellow Sea, followed by 116.6 ng L-1 in the Taiwan Strait, both in July. Multiple methods were employed to trace the biological sources of pDA. The results indicated that the primary producer was P. multistriata in the southern Yellow Sea, but P. cuspidata Clade III in the Taiwan Strait. Temperature was the key factor affecting the composition of Pseudo-nitzschia community, and both primary DA producers showed warm temperature preferences. The levels of pDA in this study was comparatively low, which may be explained by the prevalence of non-toxic Pseudo-nitzschia species and the low DA-production capacity of toxic species under the prevailing environmental conditions. This study represents the first exploration of pDA along the entire Chinese coastline, identifying primary producers and thus enhancing our understanding of DA and toxic Pseudo-nitzschia.
Collapse
Affiliation(s)
- Biaobiao Niu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Cuiwen Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, Copenhagen 1353, Denmark.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, China.
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ruiwei Ran
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| |
Collapse
|
4
|
He Z, Wang H, Chen Y, Chen N. Comparative genomic and phylogenetic analysis of mitochondrial genomes of the Pseudo-nitzschia HAB species. HARMFUL ALGAE 2025; 144:102829. [PMID: 40187791 DOI: 10.1016/j.hal.2025.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 04/07/2025]
Abstract
The genus Pseudo-nitzschia within Bacillariophyta (diatoms) is best known for its rich collection of toxigenic harmful algal bloom (HAB) species capable of producing the neurotoxin domoic acid (DA), which causes amnesic shellfish poisoning (ASP) in humans. Molecular markers such as 18S rDNA, ITS1, and ITS2 have been applied to facilitate Pseudo-nitzschia species identification because morphology-based methods often could not adequately distinguish different species due to their morphological similarities and plasticity. In this study, we constructed mitochondrial genomes (mtDNAs) for 11 Pseudo-nitzschia species and assessed their utility as "super-barcodes" for species identification and evolutionary analysis. These mtDNAs exhibited conserved genome structures despite variability in repeat regions. A potential tatA-tatC gene fusion event was observed in a single Pseudo-nitzschia species P. brasiliana. We also observed intron variability in cox1 genes. Phylogenetic analyses of mtDNAs, chloroplast genomes (cpDNAs), and nuclear ribosomal DNA (nrDNA) arrays revealed consistent results, supporting the closely related but distinct clustering of the genera Fragilariopsis and Pseudo-nitzschia. We further designed a high-resolution molecular marker tatA for species identification based on the comparative analysis of these mtDNAs, which could be used to track Pseudo-nitzschia diversity. These findings offer new genome resources and new insights into the genetic evolution and classification of Pseudo-nitzschia, underscoring the need for continued research in this field.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhang X, Chen J, Xu Z, Liu H. Metabarcoding reveals high species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters, a typical subtropical region. MARINE POLLUTION BULLETIN 2025; 212:117549. [PMID: 39827618 DOI: 10.1016/j.marpolbul.2025.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Chaetoceros, Pseudo-nitzschia, and Thalassiosira are ecologically important genera which formed blooms frequently in Hong Kong coastal waters in past decades. However, species identification based on microscopic observation for diatoms in these genera is difficult. In this study, we investigated species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters using metabarcoding approach. Based on the analysis of SSU rRNA gene (Small subunit of ribosome), LSU rRNA gene (Large subunit of ribosome), and ITS region (Internal transcribed spacer), ITS region was the best gene marker for Pseudo-nitzschia while LSU rRNA gene was better to reveal the species diversity of Chaetoceros and Thalassiosira than other two gene markers. We detected seventeen, thirteen, and seventeen species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira, respectively, in Hong Kong coastal waters. Twelve Chaetoceros species, six Pseudo-nitzschia species, and five Thalassiosira species were recorded for the first time in this study. Taking consideration of previous studies together, there are at least 31, 22 and 38 species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters. In addition, according to previous studies and local records, multiple species of three genera were capable to form blooms and ten Pseudo-nitzschia species were potentially toxic. The bloom-forming species C. tenuissimus, P. micropora, P. cuspidata, and T. lundiana as well as non-bloom forming species T. tenera were the main dominant species. The remarkably high abundance of Pseudo-nitzschia in summer was potentially mainly contributed by the P. cuspidata, which is capable to produce domoic acid locally.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Haide College, Ocean University of China, Qingdao, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, Hong Kong, China.
| |
Collapse
|
6
|
Zou J, Xiao Y, Su J, Liu Y, Wu P, Wang T, Lin L, Li C, Liu Y, Liu Y. Spatial-temporal distribution of phytoplankton HAB species and contamination status of oyster toxins under intensive oyster farming in Jiangmen coasts, the South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117834. [PMID: 39904260 DOI: 10.1016/j.ecoenv.2025.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The diversity and spatial-temporal distribution of phytoplankton HAB species, contamination status of oyster toxin, and their sources were investigated in Jiangmen oyster farming area based on morphological observation and liquid chromatography-tandem mass spectrometry analysis. The results revealed there were 28 HAB species, including 19 harmless HAB species, two toxic species (Akashiwo sanguinea and Karenia brevis), and seven toxin-producing microalgae (Alexandrium pacificum, Dinophysis caudata, D. miles, D. fortii, Gonyaulax spinifera, Gymnodinium catenatum, and K. mikimotoi). The mean abundance of total HAB species generally showed a trend of increasing from winter to autumn. The total average abundances of toxic HAB species were 269, 265, 321 and 2.6 × 103 cells L-1 in winter, spring, summer and autumn, respectively. Redundancy analysis showed temperature, dissolved oxygen, silicate and phosphate were the key factors related with variations of HAB species. Only spring oyster samples were detected paralytic shellfish toxins (PSTs) (1/15), and the composition included gonyautoxins (GTX1&2) and decarbamoyl gonyautoxin 2 (dcGTX2), with a total toxicity level of 9.96 µg STXeq kg-1. N-sulfocarbamyl (C1) and decarbamoyl gonyautoxin 3 (dcGTX3) were observed in the net-concentrated phytoplankton samples. It is inferred that these five types of PSTs derived from A. pacificum. The cultured oysters were observed five types of low-concentration lipophilic marine toxins (LMTs) including okadaic acid (OA), dinophysis-1 (DTX1), pectenotoxin-2 (PTX2), gymnodimine (GYM), and homo-yessotoxin (homo-YTX). Though the levels of PSTs and LMTs in the cultured oysters were low, the presence highlights a potential threat to the safety of oyster products from HAB species.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Yang Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China
| | - Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Yu Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China; Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, PR China; Observation and Research Station of Xisha Island Reef Fishery Ecosystem of Hainan Province/ Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/ Sanya Tropical Fisheries Research Institute, Sanya, Hainan 572018, PR China.
| |
Collapse
|
7
|
Bonačić T, Arapov J, Bušelić I, Lepen Pleić I, Milić Roje B, Tomašević T, Bužančić M, Mladinić M, Casabianca S, Penna A, Skejić S, Ninčević Gladan Ž. Advancing the Taxonomy of the Diatom Pseudo-nitzschia Through an Integrative Study Conducted in the Central and Southeastern Adriatic Sea. PLANTS (BASEL, SWITZERLAND) 2025; 14:245. [PMID: 39861598 PMCID: PMC11768262 DOI: 10.3390/plants14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The marine diatom genus Pseudo-nitzschia comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus Pseudo-nitzschia have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified Pseudo-nitzschia species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation. Pseudo-nitzschia species cell cultures isolated from the study areas were morphologically and molecularly analysed. Morphological analyses were performed using a scanning electron microscope (FE-SEM/STEM), while molecular analyses were conducted, targeting the ITS1-5.8S-ITS2, LSU, and rbcL regions, to confirm species identity. This integrative approach led to the identification of eight species: Pseudo-nitzschia allochrona, Pseudo-nitzschia calliantha, Pseudo-nitzschia delicatissima, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia mannii, Pseudo-nitzschia multistriata, Pseudo-nitzschia pseudodelicatissima, and Pseudo-nitzschia subfraudulenta. Our findings underscore the value of a combined approach for reliable species identification and contribute to the development of genetic sequence databases that support the advancement of next-generation methods such as metabarcoding. This research emphasises the importance of combined morphological and molecular methods for the differentiation of the cryptic and pseudo-cryptic Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Tina Bonačić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Jasna Arapov
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Ivana Bušelić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Blanka Milić Roje
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Tina Tomašević
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Mia Bužančić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Marija Mladinić
- Department of Biology, Faculty of Science, University of Zagreb, Ravnice 48, 10000 Zagreb, Croatia;
| | - Silvia Casabianca
- Department of Biomolecular Sciences, Campus E. Mattei, University of Urbino, Via Ca’ le Suore 2/4, 61029 Urbino, Italy; (S.C.); (A.P.)
- CoNISMa National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, Campus E. Mattei, University of Urbino, Via Ca’ le Suore 2/4, 61029 Urbino, Italy; (S.C.); (A.P.)
- CoNISMa National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Sanda Skejić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| | - Živana Ninčević Gladan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia; (J.A.); (I.B.); (I.L.P.); (B.M.R.); (T.T.); (M.B.); (S.S.); (Ž.N.G.)
| |
Collapse
|
8
|
Roche KM, Church IN, Sterling AR, Rynearson TA, Bertin MJ, Kim AM, Kirk RD, Jenkins BD. Connectivity of toxigenic Pseudo-nitzschia species assemblages between the Northeast U.S. continental shelf and an adjacent estuary. HARMFUL ALGAE 2024; 139:102738. [PMID: 39567077 DOI: 10.1016/j.hal.2024.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months.
Collapse
Affiliation(s)
- Katherine M Roche
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States.
| | - Isabella N Church
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, RI, United States
| | - Alexa R Sterling
- Region 1, U.S. Environmental Protection Agency, Boston 02109, MA, United States
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States; Department of Chemistry, Case Western Reserve University, Cleveland 44106, OH, United States
| | - Andrew M Kim
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States
| | - Bethany D Jenkins
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States; Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, RI, United States.
| |
Collapse
|
9
|
Lundholm N, Christensen AL, Olesen AKJ, Beszteri B, Eggers SL, Krock B, Altenburger A. Diversity, toxicity, and distribution of potentially toxic diatoms in Antarctic waters--With description of Pseudo-nitzschia meridionalis sp. nov. and P. glacialis sp. nov. HARMFUL ALGAE 2024; 139:102724. [PMID: 39567067 DOI: 10.1016/j.hal.2024.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/22/2024]
Abstract
Diatoms of the genus Pseudo-nitzschia, known for their potential toxicity, are integral to the phytoplankton community of the Southern Ocean, which surrounds Antarctica. Despite their ecological importance, the diversity and toxicity of Pseudo-nitzschia in this region remain underexplored. Globally, these diatoms are notorious for forming harmful algal blooms in temperate and tropical waters, causing significant impacts on marine life, ecosystems, and coastal economies. However, detailed information on the diversity, morphology, and toxicity of Pseudo-nitzschia species in Antarctic waters is limited, with molecular characterizations of these species being particularly scarce. During three research expeditions to the Southern Ocean, monoclonal strains of Pseudo-nitzschia were isolated and cultivated. Stored samples from a fourth expedition, the Brategg expedition, were used to complete the description of particularly P. turgidula. Through electron microscopy and molecular analysis, two novel species were identified-Pseudo-nitzschia meridionalis sp. nov. and Pseudo-nitzschia glacialis sp. nov.-alongside the previously described species P. subcurvata, P. turgiduloides, and P. turgidula. Toxin assays revealed no detectable levels of domoic acid in P. turgiduloides, P. turgidula, P. meridionalis sp. nov. and P. glacialis sp. nov. Conversely, P. subcurvata was reported in a related study to produce domoic acid and its isomer, isodomoic acid C. These findings emphasize the need for comprehensive research on the phytoplankton of Antarctic waters, which is currently a largely uncharted domain. With the looming threat of climate change, understanding the dynamics of potentially harmful algal populations in this region is becoming increasingly critical.
Collapse
Affiliation(s)
- Nina Lundholm
- Natural History Museum of Denmark, Dept of Biology, University of Copenhagen, Oster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Anneliese L Christensen
- Natural History Museum of Denmark, Dept of Biology, University of Copenhagen, Oster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Anna K J Olesen
- Natural History Museum of Denmark, Dept of Biology, University of Copenhagen, Oster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Bánk Beszteri
- Phycology, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany.
| | - Sarah Lena Eggers
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Polare Biologische Ozeanographie, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Andreas Altenburger
- The Arctic University Museum of Norway, UiT - the Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway.
| |
Collapse
|
10
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
11
|
Agarwal V, Sonnet V, Inomura K, Ciochetto AB, Mouw CB. Image-derived indicators of phytoplankton community responses to Pseudo-nitzschia blooms. HARMFUL ALGAE 2024; 138:102702. [PMID: 39244237 DOI: 10.1016/j.hal.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Phytoplankton populations in the natural environment interact with each other. Despite rising global concern with Pseudo-nitzschia blooms, which can produce the potent neurotoxin domoic acid, we still do not fully understand how other phytoplankton genera respond to the presence of Pseudo-nitzschia. Here, we used a 4-year high-resolution imaging dataset for 9 commonly found phytoplankton genera in Narragansett Bay, alongside environmental data, to identify potential interactions between phytoplankton genera and their response to elevated Pseudo-nitzschia abundance. Our results indicate that Pseudo-nitzschia tends to bloom either concurrently with or right after other phytoplankton genera. Such bloom periods coincide with higher water temperatures and lower salinity. Pseudo-nitzschia image abundance tends to increase the most from March-May and peaks during May-Jun, whereas the image-derived biovolume and width of Pseudo-nitzschia chains increase the most during Jan-Feb. For most phytoplankton genera, their relationship with Pseudo-nitzschia abundance is noticeably different from their relationship with Pseudo-nitzschia image features. Despite the complexity in the phytoplankton community, our analysis suggests several ecological indicators that may be used to determine the risk of harmful algal blooms.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| | - Virginie Sonnet
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA; Laboratoire d'Océanographie de Villefanche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Audrey B Ciochetto
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| |
Collapse
|
12
|
Maire Y, Schmitt FG, Kormas K, Vasileiadis S, Caruana A, Skouroliakou DI, Bampouris V, Courcot L, Hervé F, Crouvoisier M, Christaki U. Effects of turbulence on diatoms of the genus Pseudo-nitzschia spp. and associated bacteria. FEMS Microbiol Ecol 2024; 100:fiae094. [PMID: 38986513 PMCID: PMC11264304 DOI: 10.1093/femsec/fiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.
Collapse
Affiliation(s)
- Yanis Maire
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - François G Schmitt
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
| | - Sotirios Vasileiadis
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
- Department of Biochemistry and Biotechnology, Viopolis 41500, University of Thessaly, Larissa, Greece
| | - Amandine Caruana
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Dimitra-Ioli Skouroliakou
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Vasileios Bampouris
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
| | - Lucie Courcot
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Fabienne Hervé
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Muriel Crouvoisier
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Urania Christaki
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| |
Collapse
|
13
|
Huang S, Wang X, Zhang B, Xia L, Chen Y, Li G. Room-temperature fabrication of fluorinated covalent organic polymer @ Attapulgite composite for in-syringe membrane solid-phase extraction and analysis of domoic acid in aquatic products. J Chromatogr A 2024; 1721:464849. [PMID: 38564930 DOI: 10.1016/j.chroma.2024.464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223001, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, Leaw CP, Chen N. Extensive intragenomic variations of the 18S rDNA V4 region in the toxigenic diatom species Pseudo-nitzschia multistriata revealed through high-throughput sequencing. MARINE POLLUTION BULLETIN 2024; 201:116198. [PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Weizhou Chen
- Institution of Marine Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
15
|
Zhang S, Zheng T, Zhou M, Niu B, Li Y. Exposure to the mixotrophic dinoflagellate Lepidodinium sp. and its cues increase toxin production of Pseudo-nitzschia multiseries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169812. [PMID: 38181942 DOI: 10.1016/j.scitotenv.2023.169812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The present study examined the defense responses of toxigenic Pseudo-nitzschia species (P. multiseries) to a mixotrophic dinoflagellate, Lepidodinium sp., and its associated cues. We evaluated their responses to different predation risks, including direct physical contact and indirect interactions facilitated by cues from Lepidodinium sp. during active feeding on heterospecific prey (Rhodonomas salina), limited feeding on conspecific prey (P. multiseries) and non-feeding (autotrophic growth in f/2 medium) states. This study is the first investigation of these trophic interactions. Our results demonstrated a significant increase in cellular domoic acid (cDA) in P. multiseries when exposed to Lepidodinium sp. and its associated cues, which was 1.38 to 2.42 times higher than the non-induced group. Notably, this increase was observed regardless of Lepidodinium sp. feeding on this toxic diatom and nutritional modes. However, the most significant increase occurred when they directly interacted. These findings suggest that P. multiseries evaluates predation risk and increases cDA production as a defensive strategy against potential grazing threats. No morphological changes were observed in P. multiseries in response to Lepidodinium sp. or its cues. P. multiseries cultured in flasks of Group L+P-P showed a decrease in growth, but Group L-P and Group L+R-P did not exhibit any decrease. These results suggest a lack of consistent trade-offs between the defense response and growth, thus an increase in cDA production may be a sustainable and efficient defense strategy for P. multiseries. Furthermore, our findings indicate that P. multiseries had no significant impact on the fitness (cell size, growth and/or grazing) of Lepidodinium sp. and R. salina, which suggests no evident toxic or allelopathic impacts on these two phytoplankton species. This study enhances our understanding of the trophic interactions between toxic diatoms and mixotrophic dinoflagellates and helps elucidate the dynamics of Harmful Algal Blooms, toxin transmission, and their impact on ecosystem health.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Tingting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Muyao Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Biaobiao Niu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
16
|
Niu B, Pang J, Lundholm N, Liang C, Teng ST, Zheng Q, Guo X, Li Y. A Pseudo-nitzschia metabarcoding approach with a calibrated ITS1 reference sequence database applied in the Taiwan Strait. HARMFUL ALGAE 2024; 133:102602. [PMID: 38485439 DOI: 10.1016/j.hal.2024.102602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Pseudo-nitzschia is a cosmopolitan phytoplankton genus of which some species can form blooms and produce the neurotoxin domoic acid (DA). Identification of Pseudo-nitzschia is generally based on field material or strains followed by morphological and/or molecular characterization. However, this process is time-consuming and laborious, and can not obtain a relatively complete and reliable profile of the Pseudo-nitzschia community, because species with low abundance in the field or potentially unavailable for culturing may easily be overlooked. In the present study, specific ITS primer sets were designed and evaluated using in silico matching. The primer set ITS-84F/456R involving the complete ITS1 region was found optimal. Based on matching with a Pseudo-nitzschia ITS1 reference sequence database carefully-calibrated in this study, a metabarcoding approach using annotated amplicon sequence variants (ASV) was applied in the Taiwan Strait of the East China Sea during two cruises in the spring and summer of 2019. In total, 48 Pseudo-nitzschia species/phylotypes including 36 known and 12 novel were uncovered, and verified by haplotype networks, ITS2 secondary structure comparisons and divergence analyses. Correlation analyses revealed that temperature was a key factor affecting the seasonal variation of the Pseudo-nitzschia community. This study provides an overview of the Pseudo-nitzschia community in the Taiwan Strait, with new insights into the diversity. The developed metabarcoding approach may be used elsewhere as a standard reference for accurate annotation of Pseudo-nitzschia.
Collapse
Affiliation(s)
- Biaobiao Niu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Jinxiu Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Cuiwen Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Qixiang Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Xin Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China.
| |
Collapse
|
17
|
Yao Y, Luo N, Zong Y, Jia M, Rao Y, Huang H, Jiang H. Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries. Int J Mol Sci 2024; 25:1350. [PMID: 38279350 PMCID: PMC10816074 DOI: 10.3390/ijms25021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health.
Collapse
Affiliation(s)
- Yuqing Yao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yujie Zong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Meng Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Yichen Rao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (N.L.); (Y.Z.); (M.J.); (Y.R.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
18
|
von Dassow P, Mikhno M, Percopo I, Orellana VR, Aguilera V, Álvarez G, Araya M, Cornejo-Guzmán S, Llona T, Mardones JI, Norambuena L, Salas-Rojas V, Kooistra WHCF, Montresor M, Sarno D. Diversity and toxicity of the planktonic diatom genus Pseudo-nitzschia from coastal and offshore waters of the Southeast Pacific, including Pseudo-nitzschia dampieri sp. nov. HARMFUL ALGAE 2023; 130:102520. [PMID: 38061816 DOI: 10.1016/j.hal.2023.102520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023]
Abstract
To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.
Collapse
Affiliation(s)
- Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Marta Mikhno
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Valentina Rubio Orellana
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Víctor Aguilera
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile; Laboratorio de Oceanografía Desértico Costera (LODEC), Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Sebastián Cornejo-Guzmán
- Departamento de Geofísica, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112 Chile
| | - Tomás Llona
- Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | - Jorge I Mardones
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O´Higgins, Santiago 8370993, Chile
| | - Luis Norambuena
- Centro de Estudio de Algas Nocivas (CREAN), Instituto de Fomento Pesquero, Padre Harter 574, Puerto Montt, 5501679, Chile
| | - Victoria Salas-Rojas
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Instituto Milenio de Oceanografía, Universidad de Concepción, Barrio Universitario S/N, Concepción, 4070112, Chile
| | | | - Marina Montresor
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
19
|
Wang Z, Wang F, Wang C, Xie C, Tang T, Chen J, Ji S, Zhang S, Zhang Y, Jiang T. Annual variation in domoic acid in phytoplankton and shellfish samples from Daya Bay of the South China Sea. HARMFUL ALGAE 2023; 127:102438. [PMID: 37544665 DOI: 10.1016/j.hal.2023.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 08/08/2023]
Abstract
Domoic acid (DA) is a well-known phycotoxin that causes amnesic shellfish poisoning (ASP) and is mainly produced by diatom species belonging to the genus Pseudo-nitzschia. An annual survey was conducted monthly over the period of September 2020 to August 2021 in Daya Bay of the South China Sea to investigate the dynamics of particulate and shellfish DA and their relationships with the abundance of Pseudo-nitzschia spp. and environmental parameters. Pseudo-nitzschia spp. was one of the most dominant phytoplankton taxa, and a Pseudo-nitzschia bloom occurred during the survey with the highest abundance of 1.91 × 106 cells L-1. DA was detected in almost all plankton samples with the highest value of 120.7 ng L-1, and high DA concentrations coincided with the abundant presence of Pseudo-nitzschia. DA is prevalent in Daya Bay throughout the year, with detection rates of 98.3%, 82.6%, and 82.6% in plankton samples, in-situ and purchased shellfish, respectively. Higher DA concentrations were detected in the scallop (Chamys nobilis), with the highest concentration of 5.34 µg g-1. High water temperature and low DSi:DIN ratio promoted the growth of Pseudo-nitzschia and DA production. The results suggest that the increasing nitrogen loading and silicate limitation during Pseudo-nitzschia blooms together with the increase in water temperature may increase the risk of DA contamination in Daya Bay.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Fan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Tang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuanghui Ji
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuai Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuning Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tianjian Jiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Schreiber S, Hanisak MD, Perricone CS, Fonnegra AC, Sullivan J, McFarland M. Pseudo-nitzschia species, toxicity, and dynamics in the southern Indian River Lagoon, FL. HARMFUL ALGAE 2023; 126:102437. [PMID: 37290891 DOI: 10.1016/j.hal.2023.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
The Indian River Lagoon (IRL) spans approximately one-third of the east coast of Florida and, in recent years, has faced frequent harmful algal blooms (HABs). Blooms of the potentially toxic diatom, Pseudo-nitzschia, occur throughout the lagoon and were reported primarily from the northern IRL. The goal of this study was to identify species of Pseudo-nitzschia and characterize their bloom dynamics in the southern IRL system where monitoring has been less frequent. Surface water samples collected from five locations between October 2018 and May 2020 had Pseudo-nitzschia spp. present in 87% of samples at cell concentrations up to 1.9×103 cells mL-1. Concurrent environmental data showed Pseudo-nitzschia spp. were associated with relatively high salinity waters and cool temperatures. Six species of Pseudo-nitzschia were isolated, cultured, and characterized through 18S Sanger sequencing and scanning electron microscopy. All isolates demonstrated toxicity and domoic acid (DA) was present in 47% of surface water samples. We report the first known occurrence of P. micropora and P. fraudulenta in the IRL, and the first known DA production from P. micropora.
Collapse
Affiliation(s)
- Stephanie Schreiber
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America.
| | - M Dennis Hanisak
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Carlie S Perricone
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Andia Chaves Fonnegra
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - James Sullivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| | - Malcolm McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Fort Pierce, FL 34946, United States of America
| |
Collapse
|
21
|
Chen J, Yang J, He X, Wang J, Pan L, Xin M, Chen F, Liang S, Wang B. Prevalence of the neurotoxin domoic acid in the aquatic environments of the Bohai and Northern Yellow seas in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162732. [PMID: 36906020 DOI: 10.1016/j.scitotenv.2023.162732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Domoic acid (DA), a natural marine phytotoxin produced by toxigenic algae, is harmful to fishery organisms and the health of seafood consumers. In this study, we performed a whole-sea area investigation of DA in seawater, suspended particulate matter (SPM), and phytoplankton of the Bohai and Northern Yellow seas to clarify the occurrence, phase partitioning, spatial distribution, potential sources, and environmental influencing factors of DA in the aquatic environment. DA in different environmental media was identified using liquid chromatography-high resolution mass spectrometry and liquid chromatography-tandem mass spectrometry. DA was found to be predominantly in a dissolved phase (99.84 %) in seawater with only 0.16 % in SPM. Dissolved DA (dDA) was widely detected in nearshore and offshore areas of the Bohai Sea, Northern Yellow Sea, and Laizhou Bay with concentrations ranging from < limits of detection (LOD) to 25.21 ng/L (mean: 7.74 ng/L), < LOD to 34.90 ng/L (mean: 16.91 ng/L), and 1.74 ng/L to 38.20 ng/L (mean: 21.28 ng/L), respectively. dDA levels were relatively lower in the northern part than in the southern part of the study area. In particular, the dDA levels in the nearshore areas of Laizhou Bay were significantly higher than in other sea areas. This may be due to seawater temperature and nutrient levels exerting a crucial impact on the distribution of DA-producing marine algae in Laizhou Bay during early spring. Pseudo-nitzschia pungens may be the main source of DA in the study areas. Overall, DA was prevalent in the Bohai and Northern Yellow seas, especially in the nearshore aquaculture zone. Routine monitoring of DA in the mariculture zones of the northern seas and bays of China should be performed to warn shellfish farmers and prevent contamination.
Collapse
Affiliation(s)
- Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Jianbo Yang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China.
| | - Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lei Pan
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| | - Farong Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China; Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, Qingdao 266590, China
| |
Collapse
|
22
|
Hubbard KA, Villac MC, Chadwick C, DeSmidt AA, Flewelling L, Granholm A, Joseph M, Wood T, Fachon E, Brosnahan ML, Richlen M, Pathare M, Stockwell D, Lin P, Bouchard JN, Pickart R, Anderson DM. Spatiotemporal transitions in Pseudo-nitzschia species assemblages and domoic acid along the Alaska coast. PLoS One 2023; 18:e0282794. [PMID: 36947524 PMCID: PMC10032537 DOI: 10.1371/journal.pone.0282794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts (P. arctica, P. delicatissima, P. granii, P. obtusa, P. pungens, and two genotypes of P. seriata), and one represented Fragilariopsis oceanica. During summer, particulate DA (pDA; 4.0 to 130.0 ng L-1) was observed in the Bering Strait and Chukchi Sea where P. obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L-1) occurred along the Beaufort Sea shelf coincident with one P. seriata genotype, and south of the Bering Strait in association with the other P. seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a, and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters.
Collapse
Affiliation(s)
- Katherine A. Hubbard
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Maria Célia Villac
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Christina Chadwick
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Alexandra A. DeSmidt
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Leanne Flewelling
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - April Granholm
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Molly Joseph
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Taylor Wood
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Saint Petersburg, Florida, United States of America
| | - Evangeline Fachon
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael L. Brosnahan
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mindy Richlen
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mrunmayee Pathare
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Dean Stockwell
- College of Fisheries and Ocean Sciences, Institute of Marine Science, Fairbanks, Alaska, United States of America
| | - Peigen Lin
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Josée N. Bouchard
- Centre de recherche sur les biotechnologies marines, Rimouski, Québec, Canada
| | - Robert Pickart
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Donald M. Anderson
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
23
|
Progresses of the Influencing Factors and Detection Methods of Domoic Acid. Processes (Basel) 2023. [DOI: 10.3390/pr11020592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Domoic acid (DA) is a neurotoxin mainly produced by Pseudo-nitzschia diatom, which belongs to the genera Rhomboida. It can combine with the receptors of glutamate of neurotransmitters, then affecting the normal nerve signal transmission of the organism and causing nervous system disorders. However, as a natural marine drug, DA can also be used for pest prevention and control. Although the distribution of DA in the world has already been reported in the previous reviews, the time and location of its first discovery and the specific information are not complete. Therefore, the review systematically summarizes the first reported situation of DA in various countries (including species, discovery time, and collection location). Furthermore, we update and analyze the factors affecting DA production, including phytoplankton species, growth stages, bacteria, nutrient availability, trace metals, and so on. These factors may indirectly affect the growth environment or directly affect the physiological activities of the cells, then affect the production of DA. Given that DA is widely distributed in the environment, we summarize the main technical methods for the determination of DA, such as bioassay, high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay (ELISA), biosensor, and so on, as well as the advantages and disadvantages of each method used so far, which adds more new knowledge in the literature about DA until now. Finally, the DA research forecast and its industrial applications were prospected to prevent its harm and fully explore its potential value.
Collapse
|
24
|
Residue Analysis and Assessment of the Risk of Dietary Exposure to Domoic Acid in Shellfish from the Coastal Areas of China. Toxins (Basel) 2022; 14:toxins14120862. [PMID: 36548759 PMCID: PMC9783215 DOI: 10.3390/toxins14120862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Harmful algal blooms in Chinese waters have caused serious domoic acid (DA) contamination in shellfish. Although shellfish are at particular risk of dietary exposure to DA, there have been no systematic DA risk assessments in Chinese coastal waters. A total of 451 shellfish samples were collected from March to November 2020. The presence of DA and four of its isomers were detected using liquid chromatography-tandem mass spectrometry. The spatial-temporal distribution of DA occurrence and its potential health risks were examined. DA was detected in 198 shellfish samples (43.90%), with a maximum level of 942.86 μg/kg. DA was recorded in all 14 shellfish species tested and Pacific oysters (Crassostrea gigas) showed the highest average DA concentration (82.36 μg/kg). The DA concentrations in shellfish showed distinct spatial-temporal variations, with significantly higher levels of occurrence in autumn than in summer and spring (p < 0.01), and particularly high occurrence in Guangdong and Fujian Provinces. The detection rates and maximum concentrations of the four DA isomers were low. While C. gigas from Guangdong Province in September showed the highest levels of DA contamination, the risk to human consumers was low. This study improves our understanding of the potential risk of shellfish exposure to DA-residues.
Collapse
|
25
|
Du M, Wang J, Jin Y, Fan J, Zan S, Li Z. Response mechanism of microbial community during anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL RESEARCH 2022; 215:114410. [PMID: 36154856 DOI: 10.1016/j.envres.2022.114410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by toxigenic Pseudo-nitzschia blooms and quickly transfers to the benthic anaerobic environment by marine snow particles. DA anaerobic biotransformation is driven by microbial interactions, in which trace amounts of DA can cause physiological stress in marine microorganisms. However, the underlying response mechanisms of microbial community to DA stress remain unclear. In this study, we utilized an anaerobic marine DA-degrading consortium GLY (using glycine as co-substrate) to systematically investigate the global response mechanisms of microbial community during DA anaerobic biotransformation.16S rRNA gene sequencing and metatranscriptomic analyses were applied to measure microbial community structure, function and metabolic responses. Results showed that DA stress markedly changed the composition of main species, with increased levels of Firmicutes and decreased levels of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several genera of tolerated bacteria (Bacillus and Solibacillus) were increased, while, Stenotrophomonas, Sphingomonas and Acinetobacter were decreased. Metatranscriptomic analyses indicated that DA stimulated the expression of quorum sensing, extracellular polymeric substance (EPS) production, sporulation, membrane transporters, bacterial chemotaxis, flagellar assembly and ribosome protection in community, promoting bacterial adaptation ability under DA stress. Moreover, amino acid metabolism, carbohydrate metabolism and lipid metabolism were modulated during DA anaerobic biotransformation to reduce metabolic burden, increase metabolic demands for EPS production and DA degradation. This study provides the new insights into response of microbial community to DA stress and its potential impact on benthic microorganisms in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
26
|
Wang Z, Liu L, Tang Y, Li A, Liu C, Xie C, Xiao L, Lu S. Phytoplankton community and HAB species in the South China Sea detected by morphological and metabarcoding approaches. HARMFUL ALGAE 2022; 118:102297. [PMID: 36195422 DOI: 10.1016/j.hal.2022.102297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
The southern Chinese coast is one of the most developed regions in China and is an area where harmful algal blooms (HABs) have occurred frequently. In this study, differences in the phytoplankton community between microscopic observations and 18S rDNA metabarcoding were compared in 89 surface water samples collected from the southern Chinese coast and the western South China Sea (SCS). This is the first report investigating the phytoplankton community and HAB species using a combination of morphological and metabarcoding approaches in this sea area. There were substantial differences in phytoplankton community structure detected by the two methods. Microscopic observation revealed diatom predominance in the phytoplankton community, while metabarcoding indicated dinoflagellate dominance. The phytoplankton community structure obtained by microscopic observation better reflects the real situation in the water column. Metabarcoding annotated more species than morphospecies observed by microscopy. Haptophyta and Cryptophyta were the specific phyla detected in metabarcoding but were missed in microscopy due to their small size. Conversely, some taxa were found in microscopic analysis alone, such as species in Dinophysis, Prorocentrum, and Scrippsiella, suggesting some biases during metabarcoding and gaps in sequence databases. Metabarcoding is superior for detecting morphologically cryptic, small-sized and HAB taxa, such as unarmored dinoflagellates, nanosized hatophytes and chlorophytes, as well as multiple species in Alexandrium, Pseudonitzschia, and Chaetoceros in our study. A total of 62 HAB taxa were identified in this study, including blooming and potentially toxic species. Diatom abundances generally decreased southward, while those of dinoflagellates and haptophytes showed the opposite trend. Chlorophytes were mainly distributed in coastal waters, especially in the Pearl River Estuary. Phytoplankton community structures were shaped by nutrients and salinity, and phosphorus was the most limiting factor for phytoplankton growth. The phytoplankton community in the western SCS showed unique characteristics away from those in the coastal sea areas. The results suggest that the combination of morphological and metabarcoding approaches comprehensively reveals the phytoplankton community structure and diversity of HAB species.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Lei Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Percopo I, Ruggiero MV, Sarno D, Longobardi L, Rossi R, Piredda R, Zingone A. Phenological segregation suggests speciation by time in the planktonic diatom Pseudo-nitzschia allochrona sp. nov. Ecol Evol 2022; 12:e9155. [PMID: 35949533 PMCID: PMC9352866 DOI: 10.1002/ece3.9155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long-term time series and propose Pseudo-nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long-term plankton time series show P. allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms.
Collapse
Affiliation(s)
- Isabella Percopo
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | | | - Diana Sarno
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Lorenzo Longobardi
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Rachele Rossi
- Istituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly
| | - Roberta Piredda
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Present address:
Department of Veterinary MedicineUniversity of Bari Aldo MoroValenzano, BariItaly
| | - Adriana Zingone
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
28
|
Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Anal Chim Acta 2022; 1197:339515. [DOI: 10.1016/j.aca.2022.339515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
|
29
|
Ji Y, Yan G, Wang G, Liu J, Tang Z, Yan Y, Qiu J, Zhang L, Pan W, Fu Y, Li T, Luo X, Lan W, Wang Z, Li W, Li A. Prevalence and distribution of domoic acid and cyclic imines in bivalve mollusks from Beibu Gulf, China. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127078. [PMID: 34523496 DOI: 10.1016/j.jhazmat.2021.127078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Beibu Gulf is an important shellfish aquaculture area in the northwest of the South China Sea, China. In this study, the toxin profile and spatial-temporal distribution of domoic acid (DA) and 10 lipophilic phycotoxins were systematically analyzed in the bivalve mollusks collected in Beibu Gulf from October 2018 to October 2020. Neurotoxin DA was first detected in the mollusks from the investigative regions with a prevalence of 17.7%, peaking at 401 µg kg-1. Cyclic imines (CIs) including gymnodimine-A (GYM-A, 46.6%) and 13-desmethyl-spirolide-C (SPX1, 15.8%) predominated the lipophilic phycotoxins in shellfish, peaking at 10.1 µg kg-1 and 19.6 µg kg-1, respectively. Gymnodimine-A partially accompanied by SPX1 was detected in all batches of shellfish samples, suggesting that Alexandrium ostenfeldii and Karenia selliformis were possible sources of CIs-group toxins in Beibu Gulf. During the investigative period, relatively higher levels of DA occurred in shellfishes from March to August, while slightly higher contents of CIs in mollusks appeared in October and December. Spatial distribution of the targeted phycotoxins demonstrated that shellfishes tended to accumulate relatively higher contents of toxins in Lianzhou, Qinzhou and Tieshan bays.
Collapse
Affiliation(s)
- Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jianwei Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Zhixuan Tang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Wanyu Pan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yilei Fu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Tianshen Li
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Xin Luo
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weiguo Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
30
|
Liang Y, Li A, Chen J, Tan Z, Tong M, Liu Z, Qiu J, Yu R. Progress on the investigation and monitoring of marine phycotoxins in China. HARMFUL ALGAE 2022; 111:102152. [PMID: 35016765 DOI: 10.1016/j.hal.2021.102152] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin β-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.
Collapse
Key Words
- AZAs, azaspiracids
- Abbreviations: ASP, amnesic shellfish poisoning
- Animal seafood
- BMAA, β-N-methylamino-L-alanine
- CFP, ciguatera fish poisoning
- CIs, cyclic imines
- CTXs, ciguatoxins
- Coastal waters of China
- DA, domoic acid
- DSP, diarrhetic shellfish poisoning
- DTX1, dinophysistoxin-1
- DTX2, dinophysistoxin-2
- DTXs, dinophysistoxins
- ELISA, enzyme-linked immunosorbent assay
- FJ, Fujian
- GD, Guangdong
- GX, Guangxi
- GYM, gymnodimine
- HB, Hebei
- HN, Hainan
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- JS, Jiangsu
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- LMTs, lipophilic marine toxins
- LN, Liaoning
- LOD, limit of detection
- LOQ, limit of quantitation
- MBA, mouse bioassay
- Marine phycotoxins
- NSP, neurotoxic shellfish poisoning
- OA, okadaic acid
- PLTXs, palytoxins
- PSP, paralytic shellfish poisoning
- PTX2, pectenotoxin-2
- PbTXs, brevetoxins
- SD, Shandong
- SPATT, solid phase adsorbent toxin tracking
- SPE, solid phase extraction
- SPX1, 13-desmethyl spirolide C
- STXs, saxitoxins
- TTXs, tetrodotoxins
- Toxin analysis
- YTXs, yessotoxins
- ZJ, Zhejiang
- hYTX, 1-homoyessotoxin
Collapse
Affiliation(s)
- Yubo Liang
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Zhao Liu
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Liu C, Ji Y, Zhang L, Qiu J, Wang Z, Liu L, Zhuang Y, Chen T, Li Y, Niu B, Li A. Spatial distribution and source of biotoxins in phytoplankton from the South China Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126285. [PMID: 34119973 DOI: 10.1016/j.jhazmat.2021.126285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Marine phycotoxins severely threaten ecosystem health and mariculture. This study investigates the spatial distribution and source of diverse phycotoxins in the South China Sea (SCS), during four 2019/2020 cruises. Saxitoxin (STX) and okadaic acid (OA) -groups, azaspiracids, cyclic imines, pectenotoxins (PTX), yessotoxins, and domoic acid (DA) toxins were analyzed in microalgal samples. PTX2 occurred with the highest (93.5%) detection rate (DR) during all cruises, especially in the Pearl River Estuary (PRE) in June 2019. Homo-yessotoxin (hYTX) and DA were found during three cruises in August 2020, and high DR of hYTX (67.7%, 29.3%) and DA (29.0%, 29.3%) in the PRE and Guangdong coast, respectively, in June 2019 and 2020, peaking at concentrations of 777 pg hYTX L-1 and 38514 pg DA L-1. The phycotoxin distribution demonstrated that DA-producing microalgae gathered close to the PRE and Guangdong coast, while hYTX-producing microalgae distributed relatively far offshore. Microalgae producing PTX2- and STX-group toxins were more widely living in the SCS. High-throughput sequencing results suggested that Alexandrium pacificum and Gonyaulax spinifera were responsible for STX-group toxins and hYTX, respectively, while Pseudo-nitzschia cuspidata was the main source of DA. Widely distributed PTX2, hYTX, and DA were reported for the first time in the SCS.
Collapse
Affiliation(s)
- Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunyun Zhuang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Tianying Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Biaobiao Niu
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
32
|
Nishimura T, Murray JS, Boundy MJ, Balci M, Bowers HA, Smith KF, Harwood DT, Rhodes LL. Update of the Planktonic Diatom Genus Pseudo-nitzschia in Aotearoa New Zealand Coastal Waters: Genetic Diversity and Toxin Production. Toxins (Basel) 2021; 13:637. [PMID: 34564641 PMCID: PMC8473122 DOI: 10.3390/toxins13090637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Domoic acid (DA) is produced by almost half of the species belonging to the diatom genus Pseudo-nitzschia and causes amnesic shellfish poisoning (ASP). It is, therefore, important to investigate the diversity and toxin production of Pseudo-nitzschia species for ASP risk assessments. Between 2018 and 2020, seawater samples were collected from various sites around Aotearoa New Zealand, and 130 clonal isolates of Pseudo-nitzschia were established. Molecular phylogenetic analysis of partial large subunit ribosomal DNA and/or internal transcribed spacer regions revealed that the isolates were divided into 14 species (Pseudo-nitzschia americana, Pseudo-nitzschia arenysensis, Pseudo-nitzschia australis, Pseudo-nitzschia calliantha, Pseudo-nitzschia cuspidata, Pseudo-nitzschia delicatissima, Pseudo-nitzschia fraudulenta, Pseudo-nitzschia galaxiae, Pseudo-nitzschia hasleana, Pseudo-nitzschia multiseries, Pseudo-nitzschia multistriata, Pseudo-nitzschia plurisecta, Pseudo-nitzschia pungens, and Pseudo-nitzschia cf. subpacifica). The P. delicatissima and P. hasleana strains were further divided into two clades/subclades (I and II). Liquid chromatography-tandem mass spectrometry was used to assess the production of DA and DA isomers by 73 representative strains. The analyses revealed that two (P. australis and P. multiseries) of the 14 species produced DA as a primary analogue, along with several DA isomers. This study is the first geographical distribution record of P. arenysensis, P.cuspidata, P. galaxiae, and P. hasleana in New Zealand coastal waters.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - J. Sam Murray
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Michael J. Boundy
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Muharrem Balci
- Biology Department, Faculty of Science, Istanbul University, Istanbul 34134, Turkey;
| | - Holly A. Bowers
- Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA;
| | - Kirsty F. Smith
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - D. Tim Harwood
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| | - Lesley L. Rhodes
- Cawthron Institute, Nelson 7010, New Zealand; (J.S.M.); (M.J.B.); (K.F.S.); (D.T.H.)
| |
Collapse
|
33
|
Chen Y, Cui Z, Liu F, Chen N. Mitochondrial genome and phylogenomic analysis of Pseudo-nitzschia micropora (Bacillariophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2035-2037. [PMID: 34212089 PMCID: PMC8218837 DOI: 10.1080/23802359.2021.1923426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of species in the genus Pseudo-nitzschia has increased to 56, including 26 species known to produce domoic acid (DA), which is harmful to marine animals and human health. The lack of genomic sequences of Pseudo-nitzschia species has been a limiting factor in the studies of genetic and evolutionary relationships of Pseudo-nitzschia species. Here, the complete mitochondrial genome sequence of Pseudo-nitzschia micropora was determined for the first time, which was 38,792 bp in length with the overall AT content being 69.98%. The mitochondrial genome encoded 62 genes, including 36 protein-coding genes (PCGs, including orf157), 24 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. Phylogenetic tree analysis suggests that the P. micropora had a closer relationship with P. cuspidate than that with P. multiseries. The availability of the complete mitochondrial genome of P. micropora would be useful for researching the evolutionary relationships of Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
34
|
Zhang S, Zheng T, Lundholm N, Huang X, Jiang X, Li A, Li Y. Chemical and morphological defenses of Pseudo-nitzschia multiseries in response to zooplankton grazing. HARMFUL ALGAE 2021; 104:102033. [PMID: 34023076 DOI: 10.1016/j.hal.2021.102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/13/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Pseudo-nitzschia species frequently blooms in coastal waters, and some species are able to produce the toxin domoic acid (DA), hereby causing harm to the marine ecosystem and humans. Laboratory studies were conducted to investigate the influence of different levels of grazing pressure on the morphological and chemical response (in terms of cellular DA production) of Pseudo-nitzschia. Subsequently, zooplankton grazer responses to these defenses were examined. The cellular DA content of P. multiseries ranged from 0.11-0.27 pg cell-1 without grazers, and increased up to 44% with the presence of grazers (Artemia nauplii) and with grazer concentration. Grazing also affected the density of P. multiseries chains and average chain length which became ~25% higher and ~8% longer, respectively, than without grazers. These effects could either be caused by size-dependent grazing or by grazer-cue-induced effects on chain formation. A negative correlation between cellular DA content in P. multiseries and clearance and/or ingestion rates of Artemia nauplii indicate that DA might have a negative effect on the grazing of Artemia nauplii. Such interaction might result in a decrease in grazing pressure on toxic blooming species, like P. multiseries, and hence potentially a prolonged bloom. This indicates that the interaction between toxic diatoms and grazers may have implications on aquatic food web structure and the progression of Pseudo-nitzschia blooms.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Tingting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Xiaofeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Xiaohang Jiang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China.
| |
Collapse
|
35
|
Chen XM, Pang JX, Huang CX, Lundholm N, Teng ST, Li A, Li Y. Two New and Nontoxigenic Pseudo-nitzschia species (Bacillariophyceae) from Chinese Southeast Coastal Waters. JOURNAL OF PHYCOLOGY 2021; 57:335-344. [PMID: 33174223 DOI: 10.1111/jpy.13101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
To explore the species diversity and toxin profile of Pseudo-nitzschia, monoclonal strains were established from Chinese southeast coastal waters. The morphology was examined under light and transmission electron microscopy. The internal transcribed spacer region of ribosomal DNA was sequenced for phylogenetic analyses, and the secondary structure of ITS2 was predicted and compared among allied taxa. A combination of morphological and molecular data showed the presence of two new species, Pseudo-nitzschia hainanensis sp. nov. and Pseudo-nitzschia taiwanensis sp. nov. Pseudo-nitzschia hainanensis was characterized by a dumpy-lanceolate valve with slightly blunt apices and a central nodule, as well as striae comprising two rows of poroids. Pseudo-nitzschia taiwanensis was characterized by a slender-lanceolate valve, and striae comprising one row of split poroids. The poroid structure mainly comprised two sectors. Both taxa constituted their own monophyletic lineage in the phylogenetic analyses inferred from ITS2 rDNA and were well differentiated from other Pseudo-nitzschia species. Morphologically, P. hainanensis and P. taiwanensis could be assigned to the Pseudo-nitzschia delicatissima and the Pseudo-nitzschia pseudodelicatissima complex, respectively. Particulate domoic acid was measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), but no detectable pDA was found. With the description of the two new species, the species diversity of genus Pseudo-nitzschia reaches 58 worldwide, among which 31 have been recorded from Chinese coastal waters.
Collapse
Affiliation(s)
- Xiu Mei Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, China
| | - Jin Xiu Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, China
| | - Chun Xiu Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen K, Denmark
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, China
| |
Collapse
|
36
|
First Evidence of the Toxin Domoic Acid in Antarctic Diatom Species. Toxins (Basel) 2021; 13:toxins13020093. [PMID: 33530611 PMCID: PMC7912347 DOI: 10.3390/toxins13020093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The Southern Ocean is one of the most productive ecosystems in the world. It is an area heavily dependent on marine primary production and serving as a feeding ground for numerous seabirds and marine mammals. Therefore, the phytoplankton composition and presence of toxic species are of crucial importance. Fifteen monoclonal strains of Pseudo-nitzschia subcurvata, a diatom species endemic to the Southern Ocean, were established, which were characterized by morphological and molecular data and then analysed for toxin content. The neurotoxins domoic acid and iso-domoic acid C were present in three of the strains, which is a finding that represents the first evidence of these toxins in strains from Antarctic waters. Toxic phytoplankton in Antarctic waters are still largely unexplored, and their effects on the ecosystem are not well understood. Considering P. subcurvata's prevalence throughout the Southern Ocean, these results highlight the need for further investigations of the harmful properties on the Antarctic phytoplankton community as well as the presence of the toxins in the Antarctic food web, especially in the light of a changing climate.
Collapse
|