1
|
Huang S, Zuo L, Zhang L, Guo X, Cheng C, He Y, Cheng G, Yu J, Liu Y, Chen R, Tang G, Fan Y, Feng L. Design, Synthesis, and Mode of Action of Thioacetamide Derivatives as the Algicide Candidate Based on Active Substructure Splicing Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7021-7032. [PMID: 38501582 DOI: 10.1021/acs.jafc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides. Through this strategy, we first optimized the structure of the lead compound S5, designed and synthesized three series of thioacetamide derivatives (series A, B, C), and then evaluated their algicidal activities. Finally, compound A3 with excellent performance was found, which accelerated the process of discovering and developing new algicides. The biological activity assay data showed that A3 had a significant inhibitory effect on M. aeruginosa. FACHB905 (EC50 = 0.46 μM) and Synechocystis sp. PCC6803 (EC50 = 0.95 μM), which was better than the commercial algicide prometryn (M. aeruginosa. FACHB905, EC50 = 6.52 μM; Synechocystis sp. PCC6803, EC50 = 4.64 μM) as well as better than lead compound S5 (M. aeruginosa. FACHB905, EC50 = 8.80 μM; Synechocystis sp. PCC6803, EC50 = 7.70 μM). The relationship between the surface electrostatic potential, chemical reactivity, and global electrophilicity of the compounds and their activities was discussed by density functional theory (DFT). Physiological and biochemical studies have shown that A3 might affect the photosynthesis pathway and antioxidant system in cyanobacteria, resulting in the morphological changes of cyanobacterial cells. Our work demonstrated that A3 might be a promising candidate for the development of novel algicides and provided a new active skeleton for the development of subsequent chemical algicides.
Collapse
Affiliation(s)
- Shi Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cai Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyang Liu
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Ruiqing Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangmei Tang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Fan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
2
|
Kim W, Park Y, Jung J, Jeon CO, Toyofuku M, Lee J, Park W. Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms. J Microbiol 2024; 62:249-260. [PMID: 38587591 DOI: 10.1007/s12275-024-00115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 02841, Republic of Korea
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-0006, Japan
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Liao N, Zhang L, Chen M, Li J, Wang H. The influence mechanism of water level operation on algal blooms in canyon reservoirs and bloom prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169377. [PMID: 38101625 DOI: 10.1016/j.scitotenv.2023.169377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The water level operation of reservoirs affects the spatiotemporal patterns of water quality, light-heat, hydrodynamics and phytoplankton, which have implications for algal bloom prevention. However, the theoretical analysis and practical applications of related research are limited. Based on prototype observations and numerical modeling, data on algae, water level operation and environmental factors in the Zipingpu Reservoir from April and September in 2015 to 2017 and 2020 to 2022 were collected. An in-depth analysis of the causal mechanisms between algal blooms and water level operation was performed, and prevention strategies with practical application assessments were developed. Water level operation control in the reservoir from April to September can be divided into five stages (falling-rising-oscillating-falling-rising), with algal blooms occurring only in the second stage. The rising water level with inflow into the middle layers shapes a closed-loop circulation in the surface waters. This distributes the nutrients that were trapped in the surface layer during the first stage, helping algae avoid to phosphorus limitation and thrive in the closed loop circulation, leading to algal blooms (chlorophyll-a exceeding 10 mg/m3). There is a significant positive correlation (p < 0.05) between algal blooms and the rapid rise in water levels in the second stage, occurring within a span of three days. To contain the algal bloom, a water level operation limit of rising waters on the third day after a two-day consecutive rise in water level was examined. This was found to be effective after its practical application to the case reservoir in 2022, with chlorophyll-a concentrations consistently below 10 mg/m3. This study unveils the mechanisms through which water level operation affects algal blooms and presents a successful case of bloom prevention. Furthermore, it serves as a valuable reference for the management of canyon reservoirs.
Collapse
Affiliation(s)
- Ning Liao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Linglei Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Min Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Jia Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongwei Wang
- Sichuan Province Zipingpu Development Corporation Limited, Chengdu 610091, China
| |
Collapse
|
4
|
Tseytlin IN, Antrim AK, Gong P. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins (Basel) 2024; 16:41. [PMID: 38251256 PMCID: PMC10819728 DOI: 10.3390/toxins16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
With the rapid advancement of nanotechnology and its widespread applications, increasing amounts of manufactured and natural nanoparticles (NPs) have been tested for their potential utilization in treating harmful cyanobacterial blooms (HCBs). NPs can be used as a photocatalyst, algaecide, adsorbent, flocculant, or coagulant. The primary mechanisms explored for NPs to mitigate HCBs include photocatalysis, metal ion-induced cytotoxicity, physical disruption of the cell membrane, light-shielding, flocculation/coagulation/sedimentation of cyanobacterial cells, and the removal of phosphorus (P) and cyanotoxins from bloom water by adsorption. As an emerging and promising chemical/physical approach for HCB mitigation, versatile NP-based technologies offer great advantages, such as being environmentally benign, cost-effective, highly efficient, recyclable, and adaptable. The challenges we face include cost reduction, scalability, and impacts on non-target species co-inhabiting in the same environment. Further efforts are required to scale up to real-world operations through developing more efficient, recoverable, reusable, and deployable NP-based lattices or materials that are adaptable to bloom events in different water bodies of different sizes, such as reservoirs, lakes, rivers, and marine environments.
Collapse
Affiliation(s)
- Ilana N. Tseytlin
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA;
- School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Anna K. Antrim
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| | - Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| |
Collapse
|
5
|
Wijesinghe A, Senavirathna MDHJ, Fujino T. Egeria densa organic extracts: an eco-friendly approach to suppress Microcystis aeruginosa growth through allelopathy. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2955-2973. [PMID: 38096081 PMCID: wst_2023_387 DOI: 10.2166/wst.2023.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Macrophytes play a significant role in shaping plankton communities by shading, controlling water turbulence, and nutrient availability, while also producing allelochemicals causing varying effects on different organisms. Many researchers have shown that when live macrophytes are present, they inhibit cyanobacteria. However, their widespread use is often limited due to numerous concerns, including invasive characteristics. This study focused on the applicability of Egeria densa extracts to suppress Microcystis aeruginosa. We employed pure water and dimethyl sulfoxide, to obtain compounds from E. densa. The results revealed that E. densa aqueous extracts stimulated M. aeruginosa growth, whereas organic extracts exhibited suppression. Specifically, at low concentrations of organics extracts (0.5 and 1 g/L), after day 4, the growth inhibition was confirmed by significantly higher (p < 0.05) stress levels shown in cells treated with low concentrations. The highest inhibition rate of 32% was observed at 0.5 g/L. However, high concentrations of organic extracts (3 and 6 g/L), showed increased growth compared with control. These results suggest that high concentrations of organic extracts from E. densa potentially suppress allelochemical-induced M. aeruginosa inhibition due to high nutrient availability. In comparison with an aqueous solvent, the use of organic solvent seems to be more effective in efficiently extracting allelochemicals from E. densa.
Collapse
Affiliation(s)
- Ashika Wijesinghe
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan E-mail: ;
| | | | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Wang T, Liu H. Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105084-105098. [PMID: 37740161 DOI: 10.1007/s11356-023-29994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Excess nitrogen and phosphorus nutrients in the aquatic environment result in the growth of algal cells and water eutrophication, which adversely affect the aquatic environment and human health. Therefore, discovering a safe and efficient algae suppression method is necessary to ensure the ecological safety of water. Recently, the allelopathic effects of aquatic plants on algae have attracted extensive attention from researchers. This review demonstrates the current research hotspot of allelopathic algal inhibition in aquatic plants and lists the common aquatic plant species and allelochemicals. In addition, the inhibition mechanism of allelochemicals from aquatic plants on algae is systematically discussed. Moreover, the key factors affecting the inhibition of allelopathy in algae, such as pH, temperature, algal cell density, and concentration of allelochemicals, are summarized. The present utilization modes of allelochemicals on algae are also presented. Finally, the problems existing in the study of allelopathic algal inhibition of aquatic plants are highlighted, and suggestions for further research are proposed.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 21500, China
| | - Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 21500, China.
| |
Collapse
|
7
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
8
|
Evaluating Ultrasonicator Performance for Cyanobacteria Management at Freshwater Sources. Toxins (Basel) 2023; 15:toxins15030186. [PMID: 36977077 PMCID: PMC10051689 DOI: 10.3390/toxins15030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Algal blooms consisting of potentially toxic cyanobacteria are a growing source water management challenge faced by water utilities globally. Commercially available sonication devices are designed to mitigate this challenge by targeting cyanobacteria-specific cellular features and aim to inhibit cyanobacterial growth within water bodies. There is limited available literature evaluating this technology; therefore, a sonication trial was conducted in a drinking water reservoir within regional Victoria, Australia across an 18-month period using one device. The trial reservoir, referred to as Reservoir C, is the final reservoir in a local network of reservoirs managed by a regional water utility. Sonicator efficacy was evaluated through qualitative and quantitative analysis of algal and cyanobacterial trends within Reservoir C and surrounding reservoirs using field data collected across three years preceding the trial and during the 18-month duration of the trial. Qualitative assessment revealed a slight increase in eukaryotic algal growth within Reservoir C following device installation, which is likely due to local environmental factors such as rainfall-driven nutrient influx. Post-sonication quantities of cyanobacteria remained relatively consistent, which may indicate that the device was able to counteract favorable phytoplankton growth conditions. Qualitative assessments also revealed minimal prevalence variations of the dominant cyanobacterial species within the reservoir following trial initiation. Since the dominant species were potential toxin producers, there is no strong evidence that sonication altered Reservoir C’s water risk profiles during this trial. Statistical analysis of samples collected within the reservoir and from the intake pipe to the associated treatment plant supported qualitative observations and revealed a significant elevation in eukaryotic algal cell counts during bloom and non-bloom periods post-installation. Corresponding cyanobacteria biovolumes and cell counts revealed that no significant changes occurred, excluding a significant decrease in bloom season cell counts measured within the treatment plant intake pipe and a significant increase in non-bloom season biovolumes and cell counts as measured within the reservoir. One technical disruption occurred during the trial; however, this had no notable impacts on cyanobacterial prevalence. Acknowledging the limitations of the experimental conditions, data and observations from this trial indicate there is no strong evidence that sonication significantly reduced cyanobacteria occurrence within Reservoir C.
Collapse
|
9
|
Huang Q, Yu H, Dai C, Ma Z, Wang Q, Zhao M. Dynamic analysis of a new aquatic ecological model based on physical and ecological integrated control. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:930-954. [PMID: 36650796 DOI: 10.3934/mbe.2023043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Within the framework of physical and ecological integrated control of cyanobacteria bloom, because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf bifurcation of the model (2.1), which can force cyanobacteria and potential grazers to form steady-state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation works not only explore the influence of clustering on the dynamic relationship between cyanobacteria and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most important role of physical spraying treatment technology can break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of cyanobacteria and potential grazers represented by the model (2.1), this result implies that the physical spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is hoped that the results of this paper can provide some theoretical support for the physical and ecological integrated control of cyanobacteria bloom.
Collapse
Affiliation(s)
- Qiulin Huang
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Mathematics and Physics, Wenzhou University, Wenzhou 325035, China
| | - Hengguo Yu
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Mathematics and Physics, Wenzhou University, Wenzhou 325035, China
| | - Chuanjun Dai
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zengling Ma
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qi Wang
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Senavirathna MDHJ, Jayasekara MADD. Temporal variation of 2-MIB and geosmin production by Pseudanabaena galeata and Phormidium ambiguum exposed to high-intensity light. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10834. [PMID: 36635233 DOI: 10.1002/wer.10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the temporal variation of 2-methylisoborneol (2-MIB) and geosmin (GSM) production of two filamentous cyanobacteria species Pseudanabaena galeata (NIES-512; planktonic) and Phormidium ambiguum (NIES-2119; benthic) exposed to high light intensity (950-1000 μmol m-2 s-1 photosynthetically active radiation). The production of 2-MIB and GSM was quantified together with oxidative stress, chlorophyll content, and cellular protein content. The relative chlorophyll bleaching and cell degradations were compared through microscopic images. The 2-MIB production of P. galeata increased by over 42 ± 17% on the second day of exposure and remained leveled through the exposure period. P. ambiguum showed a continuous increase of 2-MIB until the 10th day, recording a 95 ± 4% increment. The GSM production was elevated until the fourth day of exposure by 46 ± 10% for P. galeata and by 74 ± 21% on the second day for P. ambiguum and reduced with prolonged exposure for both species. The chlorophyll content of P. galeata was reduced by 62 ± 7% on the second day, and that of P. ambiguum was reduced by 52 ± 9% on the fourth day and remained low. Protein and H2 O2 contents of both species were changed inconsistently. Exposure to high-intensity light can photobleach and deteriorate cells of both species, but elevations in odorous compounds can be expected.
Collapse
|
11
|
Banerji A, Benesh K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. AQUATIC ECOLOGY 2022; 3:570-587. [PMID: 36643215 PMCID: PMC9836389 DOI: 10.3390/ecologies3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water resources are critically important, but also pose risks of exposure to toxic and pathogenic microbes. Increasingly, a concern is toxic cyanobacteria, which have been linked to the death and disease of humans, domesticated animals, and wildlife in freshwater systems worldwide. Management approaches successful at reducing cyanobacterial abundance and toxin production have tended to be short-term solutions applied on small scales (e.g., algaecide application) or solutions that entail difficult multifaceted investments (e.g., modification of landscape and land use to reduce nutrient inputs). However, implementation of these approaches can be undermined by microbial species interactions that (a) provide toxic cyanobacteria with protection against the method of control or (b) permit toxic cyanobacteria to be replaced by other significant microbial threats. Understanding these interactions is necessary to avoid such scenarios and can provide a framework for novel strategies to enhance freshwater resource management via systems science (e.g., pairing existing physical and chemical approaches against cyanobacteria with ecological strategies such as manipulation of natural enemies, targeting of facilitators, and reduction of benthic occupancy and recruitment). Here, we review pertinent examples of the interactions and highlight potential applications of what is known.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research & Development, Duluth, MN 55804, USA
| | - Kasey Benesh
- Oak Ridge Institute for Science & Education, Oak Ridge, TN 37830, USA
| |
Collapse
|
12
|
Kong Y, Ji L, Wang Y, Li J, Lu H, Mo S, Wang X, Zhu L, Xu X, Zheng X. Combined Effect of NZVI and H 2O 2 on the Cyanobacterium Microcystis aeruginosa: Performance and Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3017. [PMID: 36080055 PMCID: PMC9458205 DOI: 10.3390/nano12173017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In order to eliminate the harmful cyanobacterium Microcystis aeruginosa and the algal organic matters (AOMs) produced by M. aeruginosa, the combined process of nanoscale zero-valent iron (NZVI) and hydrogen peroxide (H2O2) has been carried out, and the removal mechanism has also been clarified. As the initial cyanobacterial cell concentration is 1.0 (±0.05) × 105 cells·mL-1, all the treatments of NZVI, H2O2, and NZVI/H2O2 have inhibition effects on both the Chl a contents and photosynthetic pigments, with the Chl a removal efficiency of 47.3%, 80.5%, and 90.7% on the 5th day, respectively; moreover, the variation of ζ potential is proportional to that of the Chl a removal efficiency. The malondialdehyde content and superoxide dismutase activity are firstly increased and ultimately decreased to mitigate the oxidative stress under all the treatments. Compared with NZVI treatment alone, the oxidation of the H2O2 and NZVI/H2O2 processes can effectively destroy the antioxidant enzyme system and then inactivate the cyanobacterial cells, which further leads to the release of photosynthetic pigments and intracellular organic matters (IOM); in addition, the IOM removal efficiency (in terms of TOC) is 61.3% and 54.1% for the H2O2 and NZVI/H2O2 processes, respectively. Although NZVI is much more effective for extracellular organic matters (EOM) removal, it is less effective for IOM removal. The results of the three-dimensional EEM fluorescence spectra analysis further confirm that both H2O2 and NZVI/H2O2 have the ability to remove fluorescent substances from EOM and IOM, due to the oxidation mechanism; while NZVI has no removal effect for the fluorescent substances from EOM, it can remove part of fluorescent substances from IOM due to the agglomeration. All the results demonstrate that the NZVI/H2O2 process is a highly effective and applicable technology for the removal of M. aeruginosa and AOMs.
Collapse
Affiliation(s)
- Yun Kong
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
| | - Lipeng Ji
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Hao Lu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Xianxun Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Liang Zhu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
13
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
14
|
Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community. WATER 2022. [DOI: 10.3390/w14121855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying and denitrifying bacteria to repair the pond substrate through an enclosure experiment lasting 15 days. The results showed that the purification effect of nitrifying and denitrifying bacteria was most obvious on pond nitrogen from day 4 to day 7. The optimal relative concentration was 0.60 mg/L for nitrifying and denitrifying bacteria; NH4+-N (ammonia nitrogen) decreased by 75.83%, NO2−-N (nitrite) by 93.09%, NO3−-N (nitrate) by 38.02%, and TN (total nitrogen) by 45.16% in this concentration group on pond water. In one cycle, C/N (carbon/nitrogen) ratio of both water body and bottom sediment significantly increased, but C/N ratio of water body increased more significantly than that of sediment. Water C/N ratio increased by 76.00%, and sediment C/N ratio increased by 51.96% in the 0.60 mg/L concentration group. Amplicon sequencing of pond sediment showed that the change in nitrifying and denitrifying bacterium diversity was consistent with that in water quality index. Dominant nitrifying bacteria had a relatively high percentage, with significant differences in dominant bacterium percentage across different bacterial addition groups, while dominant denitrifying bacterium percentage was not high without significant differences among different groups. The dominant species of nitrifying bacteria were, respectively, Nitrosomonas, Nitrosovibrio, Nitrosospira, and Aeromonas, and the dominant species of denitrifying bacteria were Thauera, Azoarcus, Magnetospirillum, Azospira, and Idiomarina. The correlation analyses showed an aerobic nitrification and facultative anaerobic denitrification in pond sediments. Research shows that the addition of exogenous nitrifying and denitrifying bacteria can effectively reduce the nitrogen load of pond water and sediment. At the concentration of 0.6 mg/L, the nitrogen load of pond water and sediment decreased most obviously, which had the best effect on pond purification.
Collapse
|
15
|
Effects of Light-Emitting Diode Illumination on Sediment Surface Biological Activities and Releases of Nutrients and Metals to Overlying Water in Eutrophic Lake Microcosms. WATER 2022. [DOI: 10.3390/w14121839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The release of nutrients and metals from the sediment to the overlying water induced by oxygen depletion is an important issue in eutrophic aquatic systems. Effects of light-emitting diode (LED) illumination on oxygen conditions and release of nutrients and metals from the sediment were examined by comparing with those effects of aeration in microcosms using water and sediment of Lake Taihu, China. Periphyton with filamentous algae developed on the sediment surface in the LED (blue wavelength) treatment. Dissolved oxygen became rapidly saturated and gradually supersaturated in the aeration and LED treatments, respectively, but remained low in the control. A thicker oxic layer developed on the sediment for the LED than aeration but was poorly developed with a blackened surface in the control. Invertebrate burrows were distributed deeper and the bacterial community was more dominated by aerobic species in the LED, indicating deeper penetration of oxygen into the sediment. Nutrients (e.g., N and P) and some metals (e.g., Hg, As, and Mn) in water were lower for the LED and aeration than in the control; nutrients and other solutes that increased electric conductivity (e.g., Ca, Mg) were lower for the LED than aeration. These results suggest that LED can effectively oxygenate the bottom water by stimulating algal photosynthesis and benthic invertebrate activity, resulting in greater retention of nutrients and metals in/on sediment compared to aeration.
Collapse
|
16
|
Cumulative Effects of Physical, Chemical, and Biological Measures on Algae Growth Inhibition. WATER 2022. [DOI: 10.3390/w14060877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Measures based on concurrent alterations of an environment’s physical, chemical, and biological factors are commonly adopted to control harmful algal blooms (HABs). It was postulated that the combinations and interactions of multiple measures could exert cumulative effects (as the overall effect may or may not be equal to the additive sum for each measure individually). However, few studies have further assessed whether the cumulative effect is synergistic, additive, or antagonistic. This study proposed a framework to distinguish and quantify the cumulative effects. We also designed an experiment to investigate the cumulative effect of the combined utilization of physical (flow velocity), chemical (copper), and biological (propionamide) measures on algae growth inhibition. The results show that the cumulative effect of physical and chemical measures on algae growth inhibition was antagonistic; the cumulative effect of physical and biological measures was antagonistic; the cumulative effect of chemical and biological measures was synergistic, and the cumulative effect of all the measures together tended to be antagonistic. These results showed that the synergistic interactions between chemical and biological measures produced antagonistic effects when physical measures were added. Through response surface methodology analysis, we also found that the physical factor was the most significant factor affecting the cumulative effect, followed by the chemical factor and then the biological factor. Our results provide a more detailed understanding of the interaction patterns among multiple measures that affect algal growth. Importantly, this understanding can be further integrated into future strategy development to fully exploit the potential of the cumulative effect at its maximum performance.
Collapse
|