1
|
Cho EEL, Law M, Yu Z, Yong JN, Tan CS, Tan EY, Takahashi H, Danpanichkul P, Nah B, Soon GST, Ng CH, Tan DJH, Seko Y, Nakamura T, Morishita A, Chirapongsathorn S, Kumar R, Kow AWC, Huang DQ, Lim MC, Law JH. Artificial Intelligence and Machine Learning Predicting Transarterial Chemoembolization Outcomes: A Systematic Review. Dig Dis Sci 2025; 70:533-542. [PMID: 39708260 DOI: 10.1007/s10620-024-08747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Major society guidelines recommend transarterial chemoembolization (TACE) as the standard of care for intermediate-stage hepatocellular carcinoma (HCC) patients. However, predicting treatment response remains challenging. AIMS As artificial intelligence (AI) may predict therapeutic responses, this systematic review aims to assess the performance and effectiveness of radiomics and AI-based models in predicting TACE outcomes in patients with HCC. METHODS A systemic search was conducted on Medline and Embase databases from inception to 7th April 2024. Included studies generated a predictive model for TACE response and evaluated its performance by area under the curve (AUC), specificity, or sensitivity analysis. Systematic reviews, meta-analyses, case series and reports, pediatric, and animal studies were excluded. Secondary search of references of included articles ensured comprehensiveness. RESULTS 64 articles, with 13,412 TACE-treated patients, were included. AI in pre-treatment CT scans provided value in predicting the efficacy of TACE in HCC treatment. A positive association was observed for AI in pre-treatment MRI scans. Models incorporating radiomics had numerically better performance than those incorporating manual measured radiological variables. 39 studies demonstrated that combined predictive models had numerically better performance than models based solely on imaging or non-imaging features. CONCLUSION A combined predictive model incorporating clinical features, laboratory investigations, and radiological characteristics may effectively predict response to TACE treatment for HCC.
Collapse
Affiliation(s)
- Elina En Li Cho
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Michelle Law
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhenning Yu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claire Shiying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | | | - Pojsakorn Danpanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Nah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Fukuoka, Japan
| | - Darren Jun Hao Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toru Nakamura
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Fukuoka, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | | | - Rahul Kumar
- Department of Gastroenterology, Changi General Hospital, Singapore, Singapore
| | - Alfred Wei Chieh Kow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Mei Chin Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | - Jia Hao Law
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Li S, Liu K, Rong C, Zheng X, Cao B, Guo W, Wu X. Deep Learning-Based Automatic Segmentation Combined with Radiomics to Predict Post-TACE Liver Failure in HCC Patients. J Hepatocell Carcinoma 2024; 11:2471-2480. [PMID: 39712947 PMCID: PMC11663388 DOI: 10.2147/jhc.s499436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024] Open
Abstract
Objective To develop and validate a deep learning-based automatic segmentation model and combine with radiomics to predict post-TACE liver failure (PTLF) in hepatocellular carcinoma (HCC) patients. Methods This was a retrospective study enrolled 210 TACE-trated HCC patients. Automatic segmentation model based on nnU-Net neural network was developed to segment medical images and assessed by the Dice similarity coefficient (DSC). The screened clinical and radiomics variables were separately used to developed clinical and radiomics predictive model, and were combined through multivariate logistic regression analysis to develop a combined predictive model. The area under the curve (AUC), calibration curve, and decision curve analysis (DCA) were applied to compare the performance of the three predictive models. Results The automatic segmentation model showed satisfactory segmentation performance with an average DSC of 83.05% for tumor segmentation and 92.72% for non-tumoral liver parenchyma segmentation. The international normalized ratio (INR) and albumin (ALB) was identified as clinically independent predictors for PTLF and used to develop clinical predictive model. Ten most valuable radiomics features, including 8 from non-tumoral liver parenchyma and 2 from tumor, were selected to develop radiomics predictive model and to calculate Radscore. The combined predictive model achieved the best and significantly improved predictive performance (AUC: 0.878) compared to the clinical predictive model (AUC: 0.785) and the radiomics predictive model (AUC: 0.815). Conclusion This reliable combined predictive model can accurately predict PTLF in HCC patients, which can be a valuable reference for doctors in making suitable treatment plan.
Collapse
Affiliation(s)
- Shuai Li
- Department of Radiology, the First Affiliated Hospital of AnHui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Kaicai Liu
- Department of Radiology, the First Affiliated Hospital of AnHui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Chang Rong
- Department of Radiology, the First Affiliated Hospital of AnHui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Xiaoming Zheng
- Department of Radiology, the First Affiliated Hospital of AnHui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Bo Cao
- Department of radiology, the Second affiliated hospital of NanJing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Wei Guo
- Department of Radiology, the Second Affiliated Hospital of ShanDong First Medical University, Taian, Shandong Province, People’s Republic of China
| | - Xingwang Wu
- Department of Radiology, the First Affiliated Hospital of AnHui Medical University, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
3
|
Huang Y, Qian H. Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis. J Hepatocell Carcinoma 2024; 11:2159-2168. [PMID: 39525830 PMCID: PMC11546143 DOI: 10.2147/jhc.s493227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is associated with high mortality rates due to late detection and aggressive progression. Peritumoral radiomics, an emerging technique that quantitatively analyzes the tissue surrounding the tumor, has shown significant potential in enhancing the management of HCC. This paper examines the role of peritumoral radiomics in improving diagnostic accuracy, guiding personalized treatment strategies, and refining prognostic assessments. By offering unique insights into the tumor microenvironment, peritumoral radiomics enables more precise patient stratification and informs clinical decision-making. However, the integration of peritumoral radiomics into routine clinical practice faces several challenges. Addressing these challenges through continued research and innovation is crucial for the successful implementation of peritumoral radiomics in HCC management, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Yanhua Huang
- Department of Ultrasound, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Hongwei Qian
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People’s Republic of China
| |
Collapse
|
4
|
Lindner C. Contributing to the prediction of prognosis for treated hepatocellular carcinoma: Imaging aspects that sculpt the future. World J Gastrointest Surg 2024; 16:3377-3380. [PMID: 39575286 PMCID: PMC11577411 DOI: 10.4240/wjgs.v16.i10.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
A novel nomogram model to predict the prognosis of hepatocellular carcinoma (HCC) treated with radiofrequency ablation and transarterial chemoembolization was recently published in the World Journal of Gastrointestinal Surgery. This model includes clinical and laboratory factors, but emerging imaging aspects, particularly from magnetic resonance imaging (MRI) and radiomics, could enhance the predictive accuracy thereof. Multiparametric MRI and deep learning radiomics models significantly improve prognostic predictions for the treatment of HCC. Incorporating advanced imaging features, such as peritumoral hypointensity and radiomics scores, alongside clinical factors, can refine prognostic models, aiding in personalized treatment and better predicting outcomes. This letter underscores the importance of integrating novel imaging techniques into prognostic tools to better manage and treat HCC.
Collapse
Affiliation(s)
- Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepcion, Concepcion 4030000, Biobío, Chile
- Department of Radiology, Hospital Regional Guillermo Grant Benavente, Concepcion 4030000, Biobío, Chile
| |
Collapse
|
5
|
Sheng L, Yang C, Chen Y, Song B. Machine Learning Combined with Radiomics Facilitating the Personal Treatment of Malignant Liver Tumors. Biomedicines 2023; 12:58. [PMID: 38255165 PMCID: PMC10813632 DOI: 10.3390/biomedicines12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
In the realm of managing malignant liver tumors, the convergence of radiomics and machine learning has redefined the landscape of medical practice. The field of radiomics employs advanced algorithms to extract thousands of quantitative features (including intensity, texture, and structure) from medical images. Machine learning, including its subset deep learning, aids in the comprehensive analysis and integration of these features from diverse image sources. This potent synergy enables the prediction of responses of malignant liver tumors to various treatments and outcomes. In this comprehensive review, we examine the evolution of the field of radiomics and its procedural framework. Furthermore, the applications of radiomics combined with machine learning in the context of personalized treatment for malignant liver tumors are outlined in aspects of surgical therapy and non-surgical treatments such as ablation, transarterial chemoembolization, radiotherapy, and systemic therapies. Finally, we discuss the current challenges in the amalgamation of radiomics and machine learning in the study of malignant liver tumors and explore future opportunities.
Collapse
Affiliation(s)
- Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.S.); (C.Y.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.S.); (C.Y.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.S.); (C.Y.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.S.); (C.Y.)
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
6
|
Li C, Chen H, Zhang B, Fang Y, Sun W, Wu D, Su Z, Shen L, Wei Q. Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2023; 15:5134. [PMID: 37958309 PMCID: PMC10648149 DOI: 10.3390/cancers15215134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The objective of this study was to evaluate the discriminative capabilities of radiomics signatures derived from three distinct machine learning algorithms and to identify a robust radiomics signature capable of predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy in patients diagnosed with locally advanced rectal cancer (LARC). In a retrospective study, 211 LARC patients were consecutively enrolled and divided into a training cohort (n = 148) and a validation cohort (n = 63). From pretreatment contrast-enhanced planning CT images, a total of 851 radiomics features were extracted. Feature selection and radiomics score (Radscore) construction were performed using three different machine learning methods: least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM). The SVM-derived Radscore demonstrated a strong correlation with the pCR status, yielding area under the receiver operating characteristic curves (AUCs) of 0.880 and 0.830 in the training and validation cohorts, respectively, outperforming the RF and LASSO methods. Based on this, a nomogram was developed by combining the SVM-based Radscore with clinical indicators to predict pCR after neoadjuvant chemoradiotherapy. The nomogram exhibited superior predictive power, achieving AUCs of 0.910 and 0.866 in the training and validation cohorts, respectively. Calibration curves and decision curve analyses confirmed its appropriateness. The SVM-based Radscore demonstrated promising performance in predicting pCR for LARC patients. The machine learning-driven nomogram, which integrates the Radscore and clinical indicators, represents a valuable tool for predicting pCR in LARC patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Bicheng Zhang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Wenzheng Sun
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Dang Wu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Zhuo Su
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Li Shen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Qichun Wei
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| |
Collapse
|