1
|
Schmalkuche K, Rother T, Burgmann JM, Voß H, Höffler K, Dogan G, Ruhparwar A, Schmitto JD, Blasczyk R, Figueiredo C. Heart immunoengineering by lentiviral vector-mediated genetic modification during normothermic ex vivo perfusion. Front Immunol 2024; 15:1404668. [PMID: 38903492 PMCID: PMC11188324 DOI: 10.3389/fimmu.2024.1404668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shβ2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Henrike Voß
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Klaus Höffler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Günes Dogan
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jan D. Schmitto
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Ughetto A, Roubille F, Molina A, Battistella P, Gaudard P, Demaria R, Guihaire J, Lacampagne A, Delmas C. Heart graft preservation technics and limits: an update and perspectives. Front Cardiovasc Med 2023; 10:1248606. [PMID: 38028479 PMCID: PMC10657826 DOI: 10.3389/fcvm.2023.1248606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.
Collapse
Affiliation(s)
- Aurore Ughetto
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - François Roubille
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardiology Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Adrien Molina
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Pascal Battistella
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Philippe Gaudard
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Roland Demaria
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Julien Guihaire
- Cardiac and Vascular Surgery, Marie Lanelongue Hospital, Paris Saclay University, Le Plessis Robinson, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
| | - Clément Delmas
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Intensive Cardiac Care Unit, Cardiology Department, Rangueil University Hospital, Toulouse, France
- REICATRA, Institut Saint Jacques, CHU de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Steroids Limit Myocardial Edema During Ex Vivo Perfusion of Hearts Donated After Circulatory Death. Ann Thorac Surg 2018; 105:1763-1770. [DOI: 10.1016/j.athoracsur.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/21/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
4
|
White CW, Messer SJ, Large SR, Conway J, Kim DH, Kutsogiannis DJ, Nagendran J, Freed DH. Transplantation of Hearts Donated after Circulatory Death. Front Cardiovasc Med 2018; 5:8. [PMID: 29487855 PMCID: PMC5816942 DOI: 10.3389/fcvm.2018.00008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac transplantation has become limited by a critical shortage of suitable organs from brain-dead donors. Reports describing the successful clinical transplantation of hearts donated after circulatory death (DCD) have recently emerged. Hearts from DCD donors suffer significant ischemic injury prior to organ procurement; therefore, the traditional approach to the transplantation of hearts from brain-dead donors is not applicable to the DCD context. Advances in our understanding of ischemic post-conditioning have facilitated the development of DCD heart resuscitation strategies that can be used to minimize ischemia-reperfusion injury at the time of organ procurement. The availability of a clinically approved ex situ heart perfusion device now allows DCD heart preservation in a normothermic beating state and minimizes exposure to incremental cold ischemia. This technology also facilitates assessments of organ viability to be undertaken prior to transplantation, thereby minimizing the risk of primary graft dysfunction. The application of a tailored approach to DCD heart transplantation that focuses on organ resuscitation at the time of procurement, ex situ preservation, and pre-transplant assessments of organ viability has facilitated the successful clinical application of DCD heart transplantation. The transplantation of hearts from DCD donors is now a clinical reality. Investigating ways to optimize the resuscitation, preservation, evaluation, and long-term outcomes is vital to ensure a broader application of DCD heart transplantation in the future.
Collapse
Affiliation(s)
| | - Simon J Messer
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Stephen R Large
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Daniel H Kim
- Cardiology, University of Alberta, Edmonton, AB, Canada
| | | | - Jayan Nagendran
- Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Cardiac Surgery, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Diuwe P, Domagala P, Durlik M, Trzebicki J, Chmura A, Kwiatkowski A. The effect of the use of a TNF-alpha inhibitor in hypothermic machine perfusion on kidney function after transplantation. Contemp Clin Trials 2017; 59:44-50. [DOI: 10.1016/j.cct.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023]
|
6
|
Garbade J, Krautz C, Aupperle H, Ullmann C, Lehmann S, Kempfert J, Borger MA, Dhein S, Gummert JF, Mohr FW. Functional, metabolic, and morphological aspects of continuous, normothermic heart preservation: effects of different preparation and perfusion techniques. Tissue Eng Part C Methods 2009; 15:275-83. [PMID: 19505181 DOI: 10.1089/ten.tec.2008.0475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous blood perfusion of donor hearts for transplantation has been the focus of an increasing amount of research, but the optimal preparation and perfusion techniques have not been clearly defined. Therefore, we investigated the effectiveness of different preservation strategies using continuous, normothermic heart perfusion after donor heart harvesting. Hearts of 12 pigs were randomly assigned to two groups receiving a constant pressure perfusion in a modified Langendorff system after different preparation techniques. In Group 1, six hearts were arrested with Bretschneider HTK cardioplegia (4 degrees C) and then reperfused with a circulating pressure of 80 to 90 mmHg using leukocyte depleted autologous blood. In Group 2, beating hearts of six pigs were explanted while being perfused, without cardioplegic arrest. Post-harvesting perfusion was similar to Group 1 except for a lower circulating pressure (40-50 mm Hg). At different time points (baseline and 1, 6, and 12 h after reperfusion), myocardial biopsies were taken, and contractility was assessed by measuring the maximum rate of left ventricular pressure rise (Deltap/Deltat (max)). Adenosine triphosphate (ATP) concentration was measured in all biopsies using a bioluminescence technique. Additionally, ultrastructural alterations were investigated using electron microscopy. Hypothermic cardioplegia and a higher reperfusion pressure (Group 1) were associated with an earlier and sharper decline in contractile function and intracellular ATP concentration. Ultrastructural alterations in Group 1 appeared earlier and were more distinctive than in Group 2. Endothelial ultrastructure, in particular, was better preserved in Group 2. Significant alterations were present in both groups after 12 h of perfusion but were more severe in Group 1. Blood perfusion provides protection against severe ischemic damage for a limited time. The use of a lower perfusion pressure, as well as avoiding cardioplegia and hypothermia, led to significantly better and longer preservation of perfused hearts.
Collapse
Affiliation(s)
- Jens Garbade
- Department of Cardiac Surgery, Heart Center, University of Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohki S, Oshima K, Tsutsumi H, Koike N, Matsumoto K, Takeyoshi I. The suppression of proinflammatory cytokines improves heart function from non-heart-beating donors following transplantation in a canine model. Int Heart J 2009; 50:235-45. [PMID: 19367033 DOI: 10.1536/ihj.50.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We evaluated the effectiveness of a suppressant of the production of proinflammatory cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha on a canine heart transplantation model with non-heart-beating donors (NHBDs).Adult mongrel dogs were divided into 3 groups of 5: a control group; FR-1 in which donors were given FR167653, a potent suppressant of IL-1beta and TNF-alpha production; and FR-2 in which both donors and recipients were given FR167653. After measuring the baseline hemodynamic parameters, including cardiac output (CO), left ventricular pressure (LVP), and maximum and minimum rates of increase in LVP (+/- LVdp/dt), FR167653 was administered continuously for 30 minutes before ischemia in the FR-1 and FR-2 groups. Cardiac arrest was obtained by rapid exsanguination from the abdominal aorta and inferior vena cava. The organ was left in the cadaver for 30 minutes. The coronary vascular beds were washed out with 4 degrees C Celsior solution, and then the donor heart was preserved in 4 degrees C Celsior solution for 4 hours. The donor heart was transplanted orthotopically with cardiopulmonary bypass (CPB). FR167653 was administered intravenously from 15 minutes before aortic-cross clamping until the end of the experiment in the FR-2 group. The recipient was weaned from CPB 1 hour after reperfusion. We compared the hemodynamic parameters at 3 hours after reperfusion with the preoperative values in donor animals with the right atrial pressure at 10 mmHg and a 5 microg/kg/min dopamine infusion. Histopathological analysis was also performed.There were no significant differences in the recovery rates of the hemodynamic parameters between the control and FR-1 groups and between the FR-1 and FR-2 groups. However, the recovery rates of CO and -LVdp/dt in the FR-2 group were significantly (P < 0.05) higher than those in the control group. Histopathological analysis showed that myofilaments were better preserved in the FR-2 group compared with the control group.The administration of a suppressant of proinflammatory cytokines before both ischemia and reperfusion effectively preserves donor heart function after transplantation with NHBDs.
Collapse
Affiliation(s)
- Shigeru Ohki
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Garbade J, Krautz C, Aupperle H, Ullmann C, Lehmann S, Kempfert J, Borger MA, Dhein S, Gummert JF, Mohr FW. Functional, Metabolic, and Morphological Aspects of Continuous, Normothermic Heart Preservation: Effects of Different Preparation and Perfusion Techniques. Tissue Eng Part A 2008. [DOI: 10.1089/ten.tea.2008.0475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Collins MJ, Moainie SL, Griffith BP, Poston RS. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur J Cardiothorac Surg 2008; 34:318-25. [PMID: 18539041 PMCID: PMC2649718 DOI: 10.1016/j.ejcts.2008.03.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022] Open
Abstract
Cardiac transplantation remains the first choice for the surgical treatment of end stage heart failure. An inadequate supply of donor grafts that meet existing criteria has limited the application of this therapy to suitable candidates and increased interest in extended criteria donors. Although cold storage (CS) is a time-tested method for the preservation of hearts during the ex vivo transport interval, its disadvantages are highlighted in hearts from the extended criteria donor. In contrast, transport of high-risk hearts using hypothermic machine perfusion (MP) provides continuous support of aerobic metabolism and ongoing washout of metabolic byproducts. Perhaps more importantly, monitoring the organ's response to this intervention provides insight into the viability of a heart initially deemed as extended criteria. Obviously, ex vivo MP introduces challenges, such as ensuring homogeneous tissue perfusion and avoiding myocardial edema. Though numerous groups have experimented with this technology, the best perfusate and perfusion parameters needed to achieve optimal results remain unclear. In the present review, we outline the benefits of ex vivo MP with particular attention to how the challenges can be addressed in order to achieve the most consistent results in a large animal model of the ideal heart donor. We provide evidence that MP can be used to resuscitate and evaluate hearts from animal and human extended criteria donors, including the non-heart beating donor, which we feel is the most compelling argument for why this technology is likely to impact the donor pool.
Collapse
Affiliation(s)
- Michael J. Collins
- Division of Cardiac Surgery, Department of Surgery, University of Maryland Medical Center, N4W94 22 S. Greene St., Baltimore, MD, 21201, United States
| | - Sina L. Moainie
- Division of Cardiac Surgery, Department of Surgery, University of Maryland Medical Center, N4W94 22 S. Greene St., Baltimore, MD, 21201, United States
| | - Bartley P. Griffith
- Division of Cardiac Surgery, Department of Surgery, University of Maryland Medical Center, N4W94 22 S. Greene St., Baltimore, MD, 21201, United States
| | - Robert S. Poston
- Division of Cardiac Surgery, Department of Surgery, University of Maryland Medical Center, N4W94 22 S. Greene St., Baltimore, MD, 21201, United States
| |
Collapse
|
10
|
Stowe DF, Camara AKS, Heisner JS, Aldakkak M, Harder DR. Low-flow perfusion of guinea pig isolated hearts with 26 degrees C air-saturated Lifor solution for 20 hours preserves function and metabolism. J Heart Lung Transplant 2008; 27:1008-15. [PMID: 18765194 DOI: 10.1016/j.healun.2008.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/28/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Donor human hearts cannot be preserved for >5 hours between explantation and recipient implantation. A better approach is needed to preserve transplantable hearts for longer periods, ideally at ambient conditions for transport. We tested whether Lifor solution could satisfactorily preserve guinea pig isolated hearts perfused at low flow with no added oxygen at room temperature for 20 hours. METHODS Hearts were isolated from 18 guinea pigs and perfused initially with oxygenated Krebs-Ringer (KR) solution at 37 degrees C. Hearts were then perfused with recirculated Lifor or cardioplegia (CP) solution (K(+) 15 mmol/liter) equilibrated with room air at 20% of control flow at 26 degrees C for 20 hours. Hearts were then perfused at 100% flow with KR for 2 hours at 37 degrees C. RESULTS Lifor and CP arrested all hearts. During the 20-hour low-flow perfusion with Lifor coronary pressure increased by 6 +/- 2 mm Hg and percent oxygen extraction by 29 +/- 2%, whereas oxygen consumption (MVo(2)) decreased by 74 +/- 4%. Similar changes were noted for CP, except that MVo(2) was decreased by 86 +/- 7%. After 20-hour low-flow perfusion with Lifor and 2 hours of warm reperfusion with KR solution, diastolic left ventricular pressure (LVP), maximal dLVP/dt and percent oxygen extraction returned completely to baseline values, whereas heart rate returned to 80 +/- 3%, developed LVP to 76 +/- 3%, minimal dLVP/dt (relaxation) to 65 +/- 4%, coronary flow to 80 +/- 4%, oxygen consumption to 82 +/- 4% and cardiac efficiency to 85 +/- 4% of baseline values. Flow responses to adenosine and nitroprusside after Lifor treatment were 65 +/- 3% and 64 +/- 3% of their baseline values. After cardioplegia, treatment there was no cardiac activity, with a diastolic pressure of 35 +/- 14 mm Hg and a return of coronary flow to only 45 +/- 3% of baseline value. CONCLUSIONS Compared with a cardioplegia solution at ambient air and temperature conditions, Lifor solution is a much better medium for long-term cardiac preservation in this model.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratory, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | |
Collapse
|
11
|
Rivard AL, Hellmich C, Swingen CM, Kamdar FD, Cordova EJ, Holstad J, Baranowski TJ, Bianco RW, John R. Intermittent antegrade cardioplegia: isolated heart preservation with the Asporto heart preservation device. Prog Transplant 2008. [PMID: 18615978 DOI: 10.7182/prtr.18.2.044435h811qw0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. OBJECTIVE To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. MATERIALS AND METHODS Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n = 13) or 15.6 (0.6) hours (n = 11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n = 9) given a single antegrade dose, were compared with hearts (group 2, n = 8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. RESULTS Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P = .00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) (P = .0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. CONCLUSION Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.
Collapse
|
12
|
Rivard AL, Hellmich C, Swingen CM, Kamdar FD, Cordova EJ, Holstad J, Baranowski TJ, Bianco RW, John R. Intermittent Antegrade Cardioplegia: Isolated Heart Preservation with the Asporto Heart Preservation Device. Prog Transplant 2008; 18:127-33. [DOI: 10.1177/152692480801800210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. Objective To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. Materials and Methods Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n=13) or 15.6 (0.6) hours (n=11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n=9) given a single antegrade dose, were compared with hearts (group 2, n=8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. Results Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P=.00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) ( P=.0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. Conclusion Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.
Collapse
Affiliation(s)
- Andrew L. Rivard
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Christina Hellmich
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Cory M. Swingen
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Forum D. Kamdar
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Erin J. Cordova
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Jonathan Holstad
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Thomas J. Baranowski
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Richard W. Bianco
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| | - Ranjit John
- University of Minnesota, Minneapolis (ALR, CMS, FDK, EJC, JH, RWB, RJ) and University of Florida, Gainesville (ALR), St Cross College, Oxford University, United Kingdom (CH), and Terumo Cardiovascular Systems, Tustin, California (TJB)
| |
Collapse
|
13
|
|
14
|
Aupperle H, Garbade J, Ullmann C, Krautz C, Barten MJ, Dhein S, Schoon HA, Gummert FJ. Ultrastructural Findings in Porcine Hearts After Extracorporeal Long-term Preservation with a Modified Langendorff Perfusion System. ACTA ACUST UNITED AC 2007; 54:230-7. [PMID: 17523955 DOI: 10.1111/j.1439-0442.2007.00950.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preserved ultrastructure is an important precondition for functional regeneration after heart transplantation. We investigated the effectiveness of a newly developed modified Langendorff system in extracorporeal heart perfusion. (Experiment I) Cardioplegia and cold ischaemia were performed in six pigs. Hearts were connected to a modified Langendorff system, and perfused with leucocyte depleted autologous blood. (Experiment II) The untreated hearts of three healthy pigs served as controls. Forty-seven myocardial biopsies at different timepoints (I: n = 29, II: n = 18) were investigated by transmission electronmicroscopy. Cardioplegia/hypothermia (I) induced mild-to-moderate mitochondrial swelling, mild myofibrillar degeneration in cardiomyocytes and moderate endothelial oedema. After 4 h reperfusion cardiomyocytes showed moderate myofibrillar and mild sarcolemmal damage. Moderate endothelial degeneration, mild interstitial oedema and haemorrhages appeared. Untreated hearts (II) showed severely damaged mitochondria and nuclei after 30 min while the myofibrillar structure remained unaffected until 4 h later. This is a promising model for extracorporeal heart perfusion. However, ultrastructural findings indicated that some necessary modifications to prevent cellular damages during reperfusion were needed.
Collapse
Affiliation(s)
- H Aupperle
- Institut für Veterinär Pathologie, Universität Leipzig, An den Tierkliniken 33, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|