1
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Hagiya H, Nishimura Y, Otsuka F. Safety and usefulness of nebulized liposomal amphotericin B: Systematic scoping review. Pulm Pharmacol Ther 2023; 82:102233. [PMID: 37414132 DOI: 10.1016/j.pupt.2023.102233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Invasive fungal infections potentially result in fatal outcomes in immunocompromised hosts. Compared to intravenous administration, a nebulization therapy can achieve a high concentration of drug delivered in the respiratory tract, without a systematic absorption. We herein summarized the study findings on the safety and clinical utility of nebulized liposomal amphotericin B therapy. METHODS According to the PRISMA Extension for Scoping Reviews, we performed a search on MEDLINE and EMBASE for articles with relevant keywords, including "inhaled liposomal amphotericin B″, "nebulized liposomal amphotericin B″, or "aerosolized liposomal amphotericin B″, from the inception of these databases to August 31, 2022. RESULTS Of the 172 articles found, 27 articles, including 13 case reports, 11 observational studies, and 3 clinical trials, were selected. Generally, findings showed that nebulized liposomal amphotericin B treatment appeared to be safe and without severe adverse effects. We found an accumulated evidence for the safety, tolerability, and effectiveness of nebulized liposomal amphotericin B prophylaxis among lung transplantation recipients; however, a randomized controlled study has yet to be reported. Data on hemato-oncological patients are relatively scarce; however, a randomized controlled study suggested the prophylactic effect of nebulized liposomal amphotericin B on invasive pulmonary aspergillosis. Observational and randomized controlled studies to evaluate therapeutic efficacy of the nebulized liposomal amphotericin B therapy have not been performed. CONCLUSION In conclusion, we found increasing evidence for the effectiveness of the inhalation therapy among patients after lung transplantation and with hemato-oncological diseases.
Collapse
Affiliation(s)
- Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 7008558, Japan.
| | - Yoshito Nishimura
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 7008558, Japan; Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 7008558, Japan
| |
Collapse
|
3
|
Sato S, Kamata W, Fukaguchi K, Tsunoda S, Kamio T, Koyama H, Sugimoto H, Tamai Y. Successful treatment of invasive tracheobronchial pulmonary aspergillosis with venovenous extracorporeal membrane oxygenation and combined systemic, intratracheal instillation of liposomal amphotericin B: a case report. J Med Case Rep 2022; 16:470. [PMID: 36536458 PMCID: PMC9764550 DOI: 10.1186/s13256-022-03692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Invasive pulmonary Aspergillus and invasive bronchial aspergillosis is a life-threatening opportunistic fungal infection that predominantly affects immunocompromised hosts. A case series and review found that the mortality rate of invasive bronchial aspergillosis is high, at about 40%, and 23.7% of invasive bronchial aspergillosis patients require mechanical ventilator management. There are few reports of life-saving cases with venovenous extracorporeal membrane oxygenation as rescue therapy in invasive pulmonary Aspergillus and invasive bronchial aspergillosis. Here, we report a case of invasive bronchial aspergillosis and invasive pulmonary Aspergillus that was successfully treated with venovenous extracorporeal membrane oxygenation, and combined systemic and intratracheal instillation of liposomal amphotericin B. CASE PRESENTATION We present the case of a 61-year-old Japanese man with invasive tracheobronchial-pulmonary aspergillosis while receiving chemotherapy for malignant lymphoma. Bronchoscopy revealed trachea covered with pseudomembranous necrotizing tissue, the culture revealed Aspergillus fumigatus, and the histological findings of pseudomembranous revealed fungal hyphae. The patient required venovenous extracorporeal membrane oxygenation because of respiratory failure for atelectasis and obstructive pneumoniae. While continuing systemic administration of liposomal amphotericin B, intratracheal instillation liposomal amphotericin B was performed by bronchoscopy three times a week. Although the respiratory conditions improved and the patient was discontinued on venovenous extracorporeal membrane oxygenation, he ultimately died of recurrence of malignant lymphoma. CONCLUSION Intratracheal instillation of liposomal amphotericin B is safe, and liposomal amphotericin B instillation allowed a targeted high local drug concentration, which led to improvement in the invasive bronchial aspergillosis. In addition, since the patient was supported with venovenous extracorporeal membrane oxygenation, we were able to perform safe bronchoscopic debridement of airway lesions and intratracheal instillation of liposomal amphotericin B.
Collapse
Affiliation(s)
- Shuku Sato
- grid.415816.f0000 0004 0377 3017Division of Hematology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533 Japan
| | - Wataru Kamata
- grid.415816.f0000 0004 0377 3017Division of Hematology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533 Japan
| | - Kiyomitsu Fukaguchi
- Division of Critical Care Medicine, Shonan Kamaura General Hospital, Kamakura, Japan
| | - Shun Tsunoda
- grid.415816.f0000 0004 0377 3017Division of Hematology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533 Japan
| | - Tadashi Kamio
- Division of Critical Care Medicine, Shonan Kamaura General Hospital, Kamakura, Japan
| | - Hiroshi Koyama
- Division of Critical Care Medicine, Shonan Kamaura General Hospital, Kamakura, Japan
| | - Hideyasu Sugimoto
- grid.415816.f0000 0004 0377 3017Division of Respiratory Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yotaro Tamai
- grid.415816.f0000 0004 0377 3017Division of Hematology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533 Japan
| |
Collapse
|
4
|
Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics 2022; 14:pharmaceutics14030641. [PMID: 35336015 PMCID: PMC8949245 DOI: 10.3390/pharmaceutics14030641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary mold infections are life-threatening diseases with high morbi-mortalities. Treatment is based on systemic antifungal agents belonging to the families of polyenes (amphotericin B) and triazoles. Despite this treatment, mortality remains high and the doses of systemic antifungals cannot be increased as they often lead to toxicity. The pulmonary aerosolization of antifungal agents can theoretically increase their concentration at the infectious site, which could improve their efficacy while limiting their systemic exposure and toxicity. However, clinical experience is poor and thus inhaled agent utilization remains unclear in term of indications, drugs, and devices. This comprehensive literature review aims to describe the pharmacokinetic behavior and the efficacy of inhaled antifungal drugs as prophylaxes and curative treatments both in animal models and humans.
Collapse
Affiliation(s)
- Kévin Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Mycologie-Parasitologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| | - Jean-Philippe Martellosio
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Frédéric Tewes
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
| | - Sandrine Marchand
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Blandine Rammaert
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| |
Collapse
|
5
|
Rauwolf KK, Hoertnagl C, Lass-Floerl C, Groll AH. Interaction in vitro of pulmonary surfactant with antifungal agents used for treatment and prevention of invasive aspergillosis. J Antimicrob Chemother 2021; 77:695-698. [PMID: 34788449 DOI: 10.1093/jac/dkab422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Optimizing antifungal therapy is important to improve outcomes in severely immunocompromised patients. OBJECTIVES We analysed the in vitro interaction between pulmonary surfactant and antifungal agents used for management of invasive pulmonary aspergillosis. METHODS Amphotericin B formulations, mould-active triazoles and echinocandins were tested in vitro against 24 clinical isolates of different Aspergillus spp. with and without the addition of a commercial porcine surfactant (Curosurf®; Poractant alfa, Nycomed, Austria). The data are presented as MIC or minimum effective concentration (MEC) ranges, as MIC or MEC values that inhibited 90% of the isolates (MIC90 or MEC90) and as geometric mean (GM) MIC or MEC values. RESULTS For amphotericin B products, addition of surfactant to a final concentration of 10% led to a statistically significant reduction of the GM MIC for all Aspergillus isolates tested after 24 h (0.765 versus 0.552 mg/L; P < 0.05). For the mould-active triazoles, addition of 10% surfactant resulted in a significantly higher GM MIC at 48 h (0.625 versus 0.898 mg/L; P < 0.05). For the echinocandins, the addition of 10% surfactant led to a significantly higher GM MEC after both 24 h (0.409 versus 0.6532 mg/L; P < 0.01) and 48 h (0.527 versus 0.9378 mg/L; P < 0.01). There were no meaningful differences between individual members of the three existing classes of antifungal agents or between the different Aspergillus spp. tested. CONCLUSIONS Using EUCAST methodology, addition of porcine surfactant up to a concentration of 10% had a minor, and presumably non-relevant, impact on the in vitro activity of antifungal agents used in prophylaxis and treatment of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Haematology/Oncology, University Children's Hospital Münster, Münster, Germany.,Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Caroline Hoertnagl
- Institute of Hygiene and Medical Microbiology, Christian Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Floerl
- Institute of Hygiene and Medical Microbiology, Christian Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Haematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
6
|
Viñado C, Girón RM, Ibáñez E, García-Ortega A, Pérez I, Polanco D, Pemán J, Solé A. Filamentous fungi in the airway of patients with cystic fibrosis: Just spectators? Rev Iberoam Micol 2021; 38:168-174. [PMID: 34535388 DOI: 10.1016/j.riam.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/17/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND There are important advances in the management of bacterial infection in patients with cystic fibrosis (CF), but there are many gaps in the field of fungal infections. AIMS The aim of this study was to analyse whether chronic respiratory filamentous fungal colonization had clinical impact and whether antifungal treatment can change the disease. METHODS The prospective, bicentric and descriptive study was carried out within a 3-year follow-up period, with four-month periodicity medical controls. Adult patients from two CF units of tertiary hospitals were included. Clinical, microbiological, analytical and spirometric variables were collected. Quality of life was evaluated in a subgroup, using the Spanish version of the Revised Cystic Fibrosis Quality of Life Questionnaire (CFQ-R). To statistically analyze the evolution of forced expiratory along time (volume of air blown out in 1 second -FEV1-) and the forced vital capacity (FVC), mixed linear models were carried out. RESULTS From the ninety-eight patients under study, 40 suffered chronic filamentous fungal colonization. The presence of filamentous fungi in airway was associated to an annual fall of FEV1 and FVC of 0.029 and 0.017 litres, respectively (p<0.001). In addition, worse quality of life based on CFQ-R, significant when concerning physical condition and emotional state, was also linked with the fungal colonization. Protocolized antifungal therapy, nebulized or oral, improved FEV1 in 0.023 and 0.024 litres per year, respectively (p<0.001). CONCLUSIONS Chronic filamentous fungal colonization in patients with CF is associated with a significant annual decline of lung function that persists over time. Chronic antifungal therapy slows down this progression, mainly in the patient with more advanced disease.
Collapse
Affiliation(s)
- Clara Viñado
- Servicio de Neumología del Hospital de Barbastro, Spain.
| | - Rosa María Girón
- Unidad de Fibrosis Quística del Hospital Universitario de la Princesa de Madrid, Spain
| | - Elisa Ibáñez
- Servicio de Microbiología del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Alberto García-Ortega
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Inés Pérez
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Dinora Polanco
- Servicio de Neumología del Hospital Universitario Arnau de Vilanova de Lleida, Spain
| | - Javier Pemán
- Servicio de Microbiología del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| | - Amparo Solé
- Unidad de Fibrosis Quística y Trasplante Pulmonar del Hospital Universitario y Politécnico La Fe de Valencia, Spain
| |
Collapse
|
7
|
Ponkshe P, Feng S, Tan C. Inhalable liposomes for treating lung diseases: clinical development and challenges. Biomed Mater 2021; 16. [PMID: 34134097 DOI: 10.1088/1748-605x/ac0c0c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Inhalation delivery of liposomal drugs has distinct advantages for the treatment of pulmonary diseases. Inhalable liposomes of several drugs are currently undergoing clinical trials for a range of indications in the lungs. Herein, general principles of pulmonary delivery as well as the clinical development of inhalable liposomal drugs are reviewed.
Collapse
Affiliation(s)
- Pranav Ponkshe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Sheng Feng
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| |
Collapse
|
8
|
Liao Q, Lam JKW. Inhaled Antifungal Agents for the Treatment and Prophylaxis of Pulmonary Mycoses. Curr Pharm Des 2021; 27:1453-1468. [PMID: 33388013 DOI: 10.2174/1381612826666210101153547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary mycoses are associated with high morbidity and mortality. The current standard treatment by systemic administration is limited by inadequate local bioavailability and systemic toxic effects. Aerosolisation of antifungals is an attractive approach to overcome these problems, but no inhaled antifungal formulation is currently available for the treatment of pulmonary mycoses. Hence, the development of respirable antifungals formulations is of interest and in high demand. In this review, the recent advances in the development of antifungal formulations for pulmonary delivery are discussed, including both nebulised and dry powder formulations. Although the clinical practices of nebulised parenteral amphotericin B and voriconazole formulations (off-label use) are reported to show promising therapeutic effects with few adverse effects, there is no consensus about the dosage regimen (e.g. the dose, frequency, and whether they are used as single or combination therapy). To maximise the benefits of nebulised antifungal therapy, it is important to establish standardised protocol that clearly defines the dose and specifies the device and the administration conditions. Dry powder formulations of antifungal agents such as itraconazole and voriconazole with favourable physicochemical and aerosol properties are developed using various powder engineering technologies, but it is important to consider their suitability for use in patients with compromised lung functions. In addition, more biological studies on the therapeutic efficacy and pharmacokinetic profile are needed to demonstrate their clinical potential.
Collapse
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, Hong Kong
| |
Collapse
|
9
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
10
|
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8:1527-1544. [DOI: 10.1007/s13346-018-0550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 947] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
12
|
Sautina NV, Gubaidullin AT, Galyametdinov YG. Phase Transformations in Self-Organized System Based on Lecithin. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427217110106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Menotti J, Alanio A, Sturny-Leclère A, Vitry S, Sauvage F, Barratt G, Bretagne S. A cell impedance-based real-time in vitro assay to assess the toxicity of amphotericin B formulations. Toxicol Appl Pharmacol 2017; 334:18-23. [DOI: 10.1016/j.taap.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/02/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
14
|
Nebulized Liposomal Amphotericin B for Treatment of Pulmonary Infection Caused by Hormographiella aspergillata: Case Report and Literature Review. Mycopathologia 2017; 182:709-713. [DOI: 10.1007/s11046-017-0117-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022]
|
15
|
Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JAH, Bennett JE. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63:e1-e60. [PMID: 27365388 DOI: 10.1093/cid/ciw326] [Citation(s) in RCA: 1819] [Impact Index Per Article: 202.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Thomas F Patterson
- University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System
| | | | - David W Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, United Kingdom
| | - Jay A Fishman
- Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vicki A Morrison
- Hennepin County Medical Center and University of Minnesota, Minneapolis
| | | | - Brahm H Segal
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, and Roswell Park Cancer Institute, New York
| | | | | | - Thomas J Walsh
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | | | - John E Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med Princ Pract 2016; 25 Suppl 2:60-72. [PMID: 26938856 PMCID: PMC5588529 DOI: 10.1159/000445116] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/01/2016] [Indexed: 12/18/2022] Open
Abstract
This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects.
Collapse
Affiliation(s)
- Mindaugas Rudokas
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Mohammad Najlah
- Faculty of Medical Science, Anglia Ruskin University, Chelmsford, UK
| | - Mohamed Albed Alhnan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
- *Dr. Abdelbary Elhissi, Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, PO Box 2713, Doha (Qatar), E-Mail
| |
Collapse
|
17
|
The Effectiveness of Culture-Directed Preemptive Anti-Aspergillus Treatment in Lung Transplant Recipients at One Year After Transplant. Transplantation 2015; 99:2387-93. [DOI: 10.1097/tp.0000000000000743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Peghin M, Monforte V, Martin-Gomez MT, Ruiz-Camps I, Berastegui C, Saez B, Riera J, Ussetti P, Solé J, Gavaldá J, Roman A. 10 years of prophylaxis with nebulized liposomal amphotericin B and the changing epidemiology ofAspergillusspp. infection in lung transplantation. Transpl Int 2015; 29:51-62. [DOI: 10.1111/tri.12679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Maddalena Peghin
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Victor Monforte
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | | | - Isabel Ruiz-Camps
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristina Berastegui
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | - Berta Saez
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | - Jordi Riera
- Department of Intensive Care Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
| | - Piedad Ussetti
- Department of Pulmonology and Lung Transplant Unit; Hospital Puerta del Hierro; Madrid Spain
| | - Juan Solé
- Department of Thoracic Surgery; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
| | - Joan Gavaldá
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Antonio Roman
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
19
|
Godet C, Goudet V, Laurent F, Moal GL, Gounant V, Frat JP, cateau E, Roblot F, Cadranel J. Nebulised liposomal amphotericin B forAspergilluslung diseases: case series and literature review. Mycoses 2015; 58:173-80. [DOI: 10.1111/myc.12294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Cendrine Godet
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Véronique Goudet
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - François Laurent
- Department of Diagnostic and Therapeutic Imaging; Haut-Levêque Hospital; University Hospital of Bordeaux and Université Victor Segalen; Bordeaux France
| | - Gwenaël Le Moal
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Valérie Gounant
- AP-HP, Hôpital Tenon; Service de Pneumologie; Paris France
- Sorbonne Université; UPMC Univ Paris 06; Paris France
| | - Jean-Pierre Frat
- Service de Réanimation médicale; CHU la Milétrie; Poitiers France
| | | | - France Roblot
- Department of Infectious Diseases; CHU la Milétrie; Poitiers France
| | - Jacques Cadranel
- AP-HP, Hôpital Tenon; Service de Pneumologie; Paris France
- Sorbonne Université; UPMC Univ Paris 06; Paris France
| |
Collapse
|
20
|
Olveira C, Muñoz A, Domenech A. Terapia nebulizada. Año SEPAR. Arch Bronconeumol 2014; 50:535-45. [DOI: 10.1016/j.arbres.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 11/16/2022]
|
21
|
Xia D, Sun WK, Tan MM, Zhang M, Ding Y, Liu ZC, Su X, Shi Y. Aerosolized amphotericin B as prophylaxis for invasive pulmonary aspergillosis: a meta-analysis. Int J Infect Dis 2014; 30:78-84. [PMID: 25461661 DOI: 10.1016/j.ijid.2014.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Invasive pulmonary aspergillosis (IPA) is associated with high mortality in high-risk (immunosuppressed) patients. Many studies have investigated whether prophylactic inhalation of amphotericin B (AMB) reduces the incidence of IPA, but no definitive conclusions have been reached. The present meta-analysis was performed to evaluate the efficacy of prophylactic inhalation of AMB for the prevention of IPA. METHODS MEDLINE and other databases were searched for relevant articles published until December 2013. Randomized controlled trials that compared aerosolized AMB with placebo were included. Two reviewers independently assessed and extracted the data of all trials. RESULTS Six animal studies and two clinical trials involving 768 high-risk patients were eligible. The animal studies showed lower overall mortality rate among animals that underwent aerosolized AMB prophylaxis (odds ratio (OR) 0.13, 95% confidence interval (CI) 0.08-0.21). Similarly, the clinical trials showed a lower incidence of IPA among patients who underwent aerosolized AMB prophylaxis (OR 0.42, 95% CI 0.22-0.79). CONCLUSIONS This analysis provides evidence supporting the notion that the prophylactic use of aerosolized AMB effectively reduces the incidence of IPA among high-risk patients.
Collapse
Affiliation(s)
- Di Xia
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wen-Kui Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ming-Ming Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ming Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yuan Ding
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhi-Cheng Liu
- Southern Medical University, Guangdong, People's Republic of China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
van der Geest PJ, Dieters EI, Rijnders B, Groeneveld JAB. Safety and efficacy of amphotericin-B deoxycholate inhalation in critically ill patients with respiratory Candida spp. colonization: a retrospective analysis. BMC Infect Dis 2014; 14:575. [PMID: 25348856 PMCID: PMC4213474 DOI: 10.1186/s12879-014-0575-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background Candida spp. are frequently cultured from the respiratory tract in critically ill patients. Most intensivists start amphotericin-B deoxycholate (ABDC) inhalation therapy to eradicate Candida spp. from the respiratory tract. However, the safety and efficacy of this treatment are not well established. The purpose of this study was to assess the safety and efficacy of ABDC inhalation for the treatment of respiratory Candida spp. colonization in critically ill patients. Methods All non-neutropenic patients admitted into the intensive care unit (ICU) of a university hospital from December 2010–2011, who had positive Candida spp. cultures of the respiratory tract for more than 1 day and required mechanical ventilation >48 h were retrospectively included. The decision to start ABDC inhalation had been made by attending intensivists on clinical grounds in the context of selective decontamination of the digestive tract. Infection characteristics and patient courses were assessed. Results Hundred and thirteen consecutive patients were studied. Fifty-one of them received ABDC inhalation and their characteristics at baseline and day 1 of respiratory colonization did not differ from those of colonized patients not receiving treatment (n = 62). The ABDC-treated group had a similar Candida spp. load but did not decolonize more rapidly as compared to untreated patients. The clinical pulmonary infection and lung injury scores did not decrease as in the untreated group. In a Cox proportional hazard model, the duration of mechanical ventilation was increased (P < 0.003) by ABDC treatment independently of other potential determinants and Candida spp. colonization. No differences in ventilator-associated pneumonia or in overall mortality (up to day 90) were observed. Conclusion Treatment of respiratory Candida spp. colonization in non-neutropenic critically ill patients by inhaled ABDC may not affect respiratory colonization but may increase duration of mechanical ventilation, because of direct toxicity of the drug on the lung. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0575-3) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Cipolla D, Wu H, Gonda I, Chan HK. Aerosol performance and long-term stability of surfactant-associated liposomal ciprofloxacin formulations with modified encapsulation and release properties. AAPS PharmSciTech 2014; 15:1218-27. [PMID: 24889736 PMCID: PMC4179662 DOI: 10.1208/s12249-014-0155-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
Previously, we showed that the encapsulation and release properties of a liposomal ciprofloxacin formulation could be modified post manufacture, by addition of surfactant in concert with osmotic swelling of the liposomes. This strategy may provide more flexibility and convenience than the alternative of manufacturing multiple batches of liposomes differing in composition to cover a wide range of release profiles. The goal of this study was to develop a surfactant-associated liposomal ciprofloxacin (CFI) formulation possessing good long-term stability which could be delivered as an inhaled aerosol. Preparations of 12.5 mg/ml CFI containing 0.4% polysorbate 20 were formulated between pH 4.7 and 5.5. These formulations, before and after mesh nebulization, and after refrigerated storage for up to 2 years, were characterized in terms of liposome structure by cryogenic transmission electron microscopy (cryo-TEM) imaging, vesicle size by dynamic light scattering, pH, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. Within the narrower pH range of 4.9 to 5.2, these formulations retained their physicochemical stability after 2-year refrigerated storage, were robust to mesh nebulization, and formed respirable aerosols with a volume mean diameter (VMD) of 3.7 μm and a geometric standard deviation (GSD) of 1.7. This study demonstrates that it may be possible to provide a range of release profiles by simple addition of surfactant to a liposomal formulation post manufacture, and that these formulations may retain their physicochemical properties after long-term refrigerated storage and following aerosolization by mesh nebulizer.
Collapse
|
24
|
Gavaldà J, Meije Y, Fortún J, Roilides E, Saliba F, Lortholary O, Muñoz P, Grossi P, Cuenca-Estrella M. Invasive fungal infections in solid organ transplant recipients. Clin Microbiol Infect 2014; 20 Suppl 7:27-48. [DOI: 10.1111/1469-0691.12660] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
26
|
Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech 2014; 15:882-97. [PMID: 24728868 DOI: 10.1208/s12249-014-0114-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics.
Collapse
|
27
|
Abstract
A significant number of research articles have focused on pulmonary delivery as an alternative administration route owing to no first-pass metabolism, low protease activity, thin epithelium barrier and large surface area in the lung system. Controlled release in the pulmonary delivery system further reduces loading dose, frequency of dosing and systemic side effects, and also increases duration of action and patient compliance. Compared with other microparticles used in controlled-release pulmonary administration, hydrogels (3D polymeric matrix networks) have recently been investigated due to their swelling and mucoadhesive properties that could help bypass pulmonary delivery barriers. This review introduces controlled-release drug delivery to the lung, followed by a summary of currently available approaches for controlled-release pulmonary drug delivery. Lastly, the origin, advantages, detailed applications and concerns of hydrogels in pulmonary delivery are discussed.
Collapse
|
28
|
Abstract
No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE® (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application.
Collapse
|
29
|
|