Aoki Y, Walker NM, Misumi K, Mimura T, Vittal R, McLinden AP, Fitzgerald L, Combs MP, Lyu D, Osterholzer JJ, Pinsky DJ, Lama VN. The mitigating effect of exogenous carbon monoxide on chronic allograft rejection and fibrosis post-lung transplantation.
J Heart Lung Transplant 2023;
42:317-326. [PMID:
36522238 DOI:
10.1016/j.healun.2022.11.005]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND
Small airway inflammation and fibrosis or bronchiolitis obliterans (BO) is the predominant presentation of chronic lung allograft dysfunction (CLAD) post-lung transplantation. Carbon monoxide (CO) is a critical endogenous signaling transducer with known anti-inflammatory and anti-fibrotic effects but its therapeutic potential in CLAD remains to be fully elucidated.
METHODS
Here we investigate the effect of inhaled CO in modulating chronic lung allograft rejection pathology in a murine orthotopic lung transplant model of BO (B6D2F1/J→DBA/2J). Additionally, the effects of CO on the activated phenotype of mesenchymal cells isolated from human lung transplant recipients with CLAD were studied.
RESULTS
Murine lung allografts treated with CO (250 ppm × 30 minutes twice daily from days 7 to 40 post-transplantation) demonstrated decreased immune cell infiltration, fibrosis, and airway obliteration by flow cytometry, trichrome staining, and morphometric analysis, respectively. Decreased total collagen, with levels comparable to isografts, was noted in CO-treated allografts by quantitative hydroxyproline assay. In vitro, CO (250 ppm × 16h) was effective in reversing the fibrotic phenotype of human CLAD mesenchymal cells with decreased collagen I and β-catenin expression as well as an inhibitory effect on ERK1/2 MAPK, and mTORC1/2 signaling. Sildenafil, a phosphodiesterase 5 inhibitor, partially mimicked the effects of CO on CLAD mesenchymal cells and was partially effective in decreasing collagen deposition in murine allografts, suggesting the contribution of cGMP-dependent and -independent mechanisms in mediating the effect of CO.
CONCLUSION
These results suggest a potential role for CO in alleviating allograft fibrosis and mitigating chronic rejection pathology post-lung transplant.
Collapse