1
|
Riley JR, Borland MS, Tamaoki Y, Skipton SK, Engineer CT. Auditory Brainstem Responses Predict Behavioral Deficits in Rats with Varying Levels of Noise-Induced Hearing Loss. Neuroscience 2021; 477:63-75. [PMID: 34634426 DOI: 10.1016/j.neuroscience.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Intense noise exposure is a leading cause of hearing loss, which results in degraded speech sound discrimination ability, particularly in noisy environments. The development of an animal model of speech discrimination deficits due to noise induced hearing loss (NIHL) would enable testing of potential therapies to improve speech sound processing. Rats can accurately detect and discriminate human speech sounds in the presence of quiet and background noise. Further, it is known that profound hearing loss results in functional deafness in rats. In this study, we generated rats with a range of impairments which model the large range of hearing impairments observed in patients with NIHL. One month after noise exposure, we stratified rats into three distinct deficit groups based on their auditory brainstem response (ABR) thresholds. These groups exhibited markedly different behavioral outcomes across a range of tasks. Rats with moderate hearing loss (30 dB shifts in ABR threshold) were not impaired in speech sound detection or discrimination. Rats with severe hearing loss (55 dB shifts) were impaired at discriminating speech sounds in the presence of background noise. Rats with profound hearing loss (70 dB shifts) were unable to detect and discriminate speech sounds above chance level performance. Across groups, ABR threshold accurately predicted behavioral performance on all tasks. This model of long-term impaired speech discrimination in noise, demonstrated by the severe group, mimics the most common clinical presentation of NIHL and represents a useful tool for developing and improving interventions to target restoration of hearing.
Collapse
Affiliation(s)
- Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA.
| | - Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA
| | - Yuko Tamaoki
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA
| | - Samantha K Skipton
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Acquired hearing loss and brain plasticity. Hear Res 2017; 343:176-190. [DOI: 10.1016/j.heares.2016.05.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
|
3
|
Novák O, Zelenka O, Hromádka T, Syka J. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. J Neurophysiol 2016; 115:1860-74. [PMID: 26823513 DOI: 10.1152/jn.00810.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/28/2016] [Indexed: 02/02/2023] Open
Abstract
Exposure to loud sounds damages the auditory periphery and induces maladaptive changes in central parts of the auditory system. Diminished peripheral afferentation and altered inhibition influence the processing of sounds in the auditory cortex. It is unclear, however, which types of inhibitory interneurons are affected by acoustic trauma. Here we used single-unit electrophysiological recording and two-photon calcium imaging in anesthetized mice to evaluate the effects of acute acoustic trauma (125 dB SPL, white noise, 5 min) on the response properties of neurons in the core auditory cortex. Electrophysiological measurements suggested the selective impact of acoustic trauma on inhibitory interneurons in the auditory cortex. To further investigate which interneuronal types were affected, we used two-photon calcium imaging to record the activity of neurons in cortical layers 2/3 and 4, specifically focusing on parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. Spontaneous and pure-tone-evoked firing rates of SST+ interneurons increased in layer 4 immediately after acoustic trauma and remained almost unchanged in layer 2/3. Furthermore, PV+ interneurons with high best frequencies increased their evoked-to-spontaneous firing rate ratios only in layer 2/3 and did not change in layer 4. Finally, acoustic trauma unmasked low-frequency excitatory inputs only in layer 2/3. Our results demonstrate layer-specific changes in the activity of auditory cortical inhibitory interneurons within minutes after acoustic trauma.
Collapse
Affiliation(s)
- Ondřej Novák
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Zelenka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hromádka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
4
|
Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron 2016; 89:867-79. [PMID: 26833137 DOI: 10.1016/j.neuron.2015.12.041] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022]
Abstract
Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex-and, to a lesser extent, the midbrain-rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment.
Collapse
|
5
|
Gold JR, Nodal FR, Peters F, King AJ, Bajo VM. Auditory gap-in-noise detection behavior in ferrets and humans. Behav Neurosci 2015; 129:473-90. [PMID: 26052794 PMCID: PMC4516322 DOI: 10.1037/bne0000065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/06/2015] [Accepted: 04/10/2015] [Indexed: 12/24/2022]
Abstract
The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret's behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy, and Genetics, University of Oxford
| | - Fernando R Nodal
- Department of Physiology, Anatomy, and Genetics, University of Oxford
| | - Fabian Peters
- Department of Physiology, Anatomy, and Genetics, University of Oxford
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford
| |
Collapse
|
6
|
Eggermont JJ, Roberts LE. Tinnitus: animal models and findings in humans. Cell Tissue Res 2015; 361:311-36. [PMID: 25266340 PMCID: PMC4487353 DOI: 10.1007/s00441-014-1992-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic tinnitus (ringing of the ears) is a medically untreatable condition that reduces quality of life for millions of individuals worldwide. Most cases are associated with hearing loss that may be detected by the audiogram or by more sensitive measures. Converging evidence from animal models and studies of human tinnitus sufferers indicates that, while cochlear damage is a trigger, most cases of tinnitus are not generated by irritative processes persisting in the cochlea but by changes that take place in central auditory pathways when auditory neurons lose their input from the ear. Forms of neural plasticity underlie these neural changes, which include increased spontaneous activity and neural gain in deafferented central auditory structures, increased synchronous activity in these structures, alterations in the tonotopic organization of auditory cortex, and changes in network behavior in nonauditory brain regions detected by functional imaging of individuals with tinnitus and corroborated by animal investigations. Research on the molecular mechanisms that underlie neural changes in tinnitus is in its infancy and represents a frontier for investigation.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, and Department of Psychology, University of Calgary, 2500 University Drive N.W, Calgary, AB, Canada,
| | | |
Collapse
|
7
|
Behavioral and neural discrimination of speech sounds after moderate or intense noise exposure in rats. Ear Hear 2015; 35:e248-61. [PMID: 25072238 DOI: 10.1097/aud.0000000000000062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Hearing loss is a commonly experienced disability in a variety of populations including veterans and the elderly and can often cause significant impairment in the ability to understand spoken language. In this study, we tested the hypothesis that neural and behavioral responses to speech will be differentially impaired in an animal model after two forms of hearing loss. DESIGN Sixteen female Sprague-Dawley rats were exposed to one of two types of broadband noise which was either moderate or intense. In nine of these rats, auditory cortex recordings were taken 4 weeks after noise exposure (NE). The other seven were pretrained on a speech sound discrimination task prior to NE and were then tested on the same task after hearing loss. RESULTS Following intense NE, rats had few neural responses to speech stimuli. These rats were able to detect speech sounds but were no longer able to discriminate between speech sounds. Following moderate NE, rats had reorganized cortical maps and altered neural responses to speech stimuli but were still able to accurately discriminate between similar speech sounds during behavioral testing. CONCLUSIONS These results suggest that rats are able to adjust to the neural changes after moderate NE and discriminate speech sounds, but they are not able to recover behavioral abilities after intense NE. Animal models could help clarify the adaptive and pathological neural changes that contribute to speech processing in hearing-impaired populations and could be used to test potential behavioral and pharmacological therapies.
Collapse
|
8
|
Huetz C, Guedin M, Edeline JM. Neural correlates of moderate hearing loss: time course of response changes in the primary auditory cortex of awake guinea-pigs. Front Syst Neurosci 2014; 8:65. [PMID: 24808831 PMCID: PMC4009414 DOI: 10.3389/fnsys.2014.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/07/2014] [Indexed: 11/21/2022] Open
Abstract
Over the last decade, the consequences of acoustic trauma on the functional properties of auditory cortex neurons have received growing attention. Changes in spontaneous and evoked activity, shifts of characteristic frequency (CF), and map reorganizations have extensively been described in anesthetized animals (e.g., Noreña and Eggermont, 2003, 2005). Here, we examined how the functional properties of cortical cells are modified after partial hearing loss in awake guinea pigs. Single unit activity was chronically recorded in awake, restrained, guinea pigs from 3 days before up to 15 days after an acoustic trauma induced by a 5 kHz 110 dB tone delivered for 1 h. Auditory brainstem responses (ABRs) audiograms indicated that these parameters produced a mean ABR threshold shift of 20 dB SPL at, and one octave above, the trauma frequency. When tested with pure tones, cortical cells showed on average a 25 dB increase in threshold at CF the day following the trauma. Over days, this increase progressively stabilized at only 10 dB above control value indicating a progressive recovery of cortical thresholds, probably reflecting a progressive shift from temporary threshold shift (TTS) to permanent threshold shift (PTS). There was an increase in response latency and in response variability the day following the trauma but these parameters returned to control values within 3 days. When tested with conspecific vocalizations, cortical neurons also displayed an increase in response latency and in response duration the day after the acoustic trauma, but there was no effect on the average firing rate elicited by the vocalization. These findings suggest that, in cases of moderate hearing loss, the temporal precision of neuronal responses to natural stimuli is impaired despite the fact the firing rate showed little or no changes.
Collapse
Affiliation(s)
- Chloé Huetz
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Maud Guedin
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| | - Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS, UMR 8195, Université Paris-Sud Orsay, France
| |
Collapse
|
9
|
Jakkamsetti V, Chang KQ, Kilgard MP. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment. J Neurophysiol 2011; 107:1457-75. [PMID: 22131375 DOI: 10.1152/jn.01057.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | | | | |
Collapse
|
10
|
Floody OR, Ouda L, Porter BA, Kilgard MP. Effects of damage to auditory cortex on the discrimination of speech sounds by rats. Physiol Behav 2010; 101:260-8. [PMID: 20580729 DOI: 10.1016/j.physbeh.2010.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022]
Abstract
The intensity of a noise-induced startle response can be reduced by the presentation of an otherwise neutral stimulus immediately before the noise ("prepulse inhibition" or PPI). We used a form of PPI to study the effects of damage to auditory cortex on the discrimination of speech sounds by rats. Subjects underwent control surgery or treatment of the auditory cortex with the vasoconstrictor endothelin-1. This treatment caused damage concentrated in primary auditory cortex (A1). Both before and after lesions, subjects were tested on 5 tasks, most presenting a pair of human speech sounds (consonant-vowel syllables) so that the capacity for discrimination would be evident in the extent of PPI. Group comparisons failed to reveal any consistent lesion effect. At the same time, the analysis of individual differences in performance by multiple regression suggests that some of the temporal processing required to discriminate speech sounds is concentrated anteroventrally in the right A1. These results also confirm that PPI can be adapted to studies of the brain mechanisms involved in the processing of speech and other complex sounds.
Collapse
Affiliation(s)
- Owen R Floody
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania 17837, United States.
| | | | | | | |
Collapse
|
11
|
Akhoun I, Gallégo S, Moulin A, Ménard M, Veuillet E, Berger-Vachon C, Collet L, Thai-Van H. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clin Neurophysiol 2008; 119:922-33. [PMID: 18291717 DOI: 10.1016/j.clinph.2007.12.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/10/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the temporal relationship between speech auditory brainstem responses and acoustic pattern of the phoneme /ba/. METHODS Speech elicited auditory brainstem responses (Speech ABR) to /ba/ were recorded in 23 normal-hearing subjects. Effect of stimulus intensity was assessed on Speech ABR components latencies in 11 subjects. The effect of different transducers on electromagnetic leakage was also measured. RESULTS Speech ABR showed a reproducible onset response (OR) 6ms after stimulus onset. The frequency following response (FFR) waveform mimicked the 500Hz low pass filtered temporal waveform of phoneme /ba/ with a latency shift of 14.6ms. In addition, the OR and FFR latencies decreased with increasing stimulus intensity, with a greater rate for FFR (-1.4ms/10dB) than for OR (-0.6ms/10dB). CONCLUSIONS A close relationship was found between the pattern of the acoustic stimulus and the FFR temporal structure. Furthermore, differences in latency behaviour suggest different generation mechanisms for FFR and OR. SIGNIFICANCE The results provided further insight into the temporal encoding of basic speech stimulus at the brainstem level in humans.
Collapse
Affiliation(s)
- I Akhoun
- Université Claude Bernard Lyon I, Université de Lyon, Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS UMR 5020, Hôpital Edouard Herriot, Pavillon U - 5, pl. d'Arsonval, F-69003 Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yin SK, Feng YM, Chen ZN, Wang J. The effect of noise-induced sloping high-frequency hearing loss on the gap-response in the inferior colliculus and auditory cortex of guinea pigs. Hear Res 2008; 239:126-40. [PMID: 18348901 DOI: 10.1016/j.heares.2008.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/11/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
Gap detection has been used as an evaluation tool for temporal processing in subjects with sensorineural hearing loss (SNHL). However, the results from other reports are varied making it difficult to clearly define the impact of SNHL on the temporal processing ability of the auditory system. Specifically, we do not know if and how a high-frequency hearing loss impacts, presumably through off-channel interaction, the temporal processing in low-frequency channels where hearing sensitivity is virtually normal. In this experiment, gap-evoked responses in a low-frequency band (0.5-8 kHz) were recorded in the inferior colliculus (IC) and auditory cortex (AC) of guinea pigs through implanted electrodes, before and after a slopping high-frequency hearing loss, which was induced by over-stimulation using a 12-kHz-tone. The results showed that the gap thresholds in the low-frequency region increased gradually and became significantly higher 8 weeks after the induced high-frequency hearing loss. In addition, the response latency was slightly increased in the IC but this was not true for the AC. These results strongly indicate that a high-frequency hearing loss exerted an off-channel impact on temporal processing in the low-frequency region of the auditory system.
Collapse
Affiliation(s)
- Shan-Kai Yin
- The Affiliated Sixth People's Hospital, Otorhinolaryngology Institute, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | | | |
Collapse
|
13
|
Sensorineural hearing loss and neural correlates of temporal acuity in the inferior colliculus of the C57BL/6 mouse. J Assoc Res Otolaryngol 2007; 9:90-101. [PMID: 17994264 DOI: 10.1007/s10162-007-0101-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022] Open
Abstract
Perception of complex sounds depends on the encoding of the dynamic and static structures within the ongoing stimulus by the auditory system. Aging has been associated with deficits in both areas, thus, the difficulty that the elderly have in speech comprehension could due to hearing loss, or to a loss of temporal sensitivity, or some combination of both. We investigated the effects of sensorineural hearing loss (SNHL) on neural correlates of temporal resolution by recording the responses of inferior colliculus neurons to a gap detection paradigm. We used C57BL/6 (C57) strain of laboratory mouse, which carries the Ahl deafness gene that initiates a progressive high frequency SNHL beginning at about 2 months of age and rapidly progresses to total deafness by 18 months. We compared gap encoding from inferior collicular neurons from young, normal-hearing C57 mice and middle-aged, hearing-impaired, C57 mice, quantifying minimal gap threshold, and recovery functions. The proportion of unit types, spontaneous rates and degree of monotonicity were comparable between young and middle-aged C57 mice. As expected, single unit thresholds were elevated by 30-40 dB in middle-aged C57 mice. However, no significant differences in mean minimal gap thresholds or in the slopes of the gap recovery functions were found between the two age groups. Thus, the results suggest that moderate high frequency SNHL does not affect temporal processing as measured by the gap detection paradigm.
Collapse
|
14
|
Bar-Yosef O, Nelken I. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front Comput Neurosci 2007; 1:3. [PMID: 18946525 PMCID: PMC2525935 DOI: 10.3389/neuro.10.003.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/09/2007] [Indexed: 11/23/2022] Open
Abstract
Animal vocalizations in natural settings are invariably accompanied by an acoustic background with a complex statistical structure. We have previously demonstrated that neuronal responses in primary auditory cortex of halothane-anesthetized cats depend strongly on the natural background. Here, we study in detail the neuronal responses to the background sounds and their relationships to the responses to the foreground sounds. Natural bird chirps as well as modifications of these chirps were used. The chirps were decomposed into three components: the clean chirps, their echoes, and the background noise. The last two were weaker than the clean chirp by 13 and 29 dB on average respectively. The test stimuli consisted of the full natural stimulus, the three basic components, and their three pairwise combinations. When the level of the background components (echoes and background noise) presented alone was sufficiently loud to evoke neuronal activity, these background components had an unexpectedly strong effect on the responses of the neurons to the main bird chirp. In particular, the responses to the original chirps were more similar on average to the responses evoked by the two background components than to the responses evoked by the clean chirp, both in terms of the evoked spike count and in terms of the temporal pattern of the responses. These results suggest that some of the neurons responded specifically to the acoustic background even when presented together with the substantially louder main chirp, and may imply that neurons in A1 already participate in auditory source segregation.
Collapse
Affiliation(s)
- Omer Bar-Yosef
- Department of Pediatrics, Safra Children's Hospital, Sheba Medical Center, Israel.
| | | |
Collapse
|
15
|
Eggermont JJ. Correlated neural activity as the driving force for functional changes in auditory cortex. Hear Res 2007; 229:69-80. [PMID: 17296278 DOI: 10.1016/j.heares.2007.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/31/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
The functional role of neural synchrony is reflected in cortical tonotopic map reorganization and in the emergence of pathological phenomena such as tinnitus. First of all experimenter-centered and subject-centered views of neural activity will be contrasted; this argues against the use of stimulus-correction procedures and favors the use of a correction procedure based on neural activity without reference to stimulus timing. Within a cortical column neurons fired synchronously with on average about 6% of their spikes in a 1 ms bin and occasionally showing 30% or more of such coincident spikes. For electrode separations exceeding 200 microm the average peak correlation strength only occasionally reached 3%. The experimental evidence for coincidence of neural activity, neural correlation and neural synchrony shows that horizontal fibers activity can induce strong neural correlations. Cortico-cortical connections for a large part connect cell groups with characteristic frequencies differing by more than one octave. Such neurons have generally non-overlapping receptive fields but still can have sizeable peak cross-correlations. Correlated neural activity and heterotopic neural interconnections are presented as the substrates for cortical reorganization; increased neural synchrony and tonotopic map reorganization go hand in hand. This links cortical reorganization with hypersynchrony that can be considered as an important driving force underlying tinnitus.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Aizawa N, Eggermont JJ. Mild noise-induced hearing loss at young age affects temporal modulation transfer functions in adult cat primary auditory cortex. Hear Res 2007; 223:71-82. [PMID: 17123758 DOI: 10.1016/j.heares.2006.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/05/2006] [Accepted: 09/18/2006] [Indexed: 11/16/2022]
Abstract
Kittens were exposed for 2h to a 1/3rd octave band of noise centered at 5kHz and at 120dB SPL. After the exposure, they were kept in a quiet room for at least 4 weeks, and until they were mature. The noise-exposed cats showed on average 16.5dB higher ABR thresholds and 13.2dB higher thresholds at the characteristic frequency (CF) than the control cats for frequencies between 4 and 16kHz. The frequency-tuning curve bandwidth at 20dB above threshold was significantly increased compared to controls in the CF region of the hearing loss. In noise-exposed cats, temporal modulation-transfer functions (tMTFs) to amplitude-modulated (AM) noise, but not to periodic click trains, showed a marked increase for modulation frequencies (MFs) below 6Hz. The vectorstrength in noise-exposed cats increased for all modulation frequencies below 32Hz for neurons with a CF in the range of the hearing loss. The tMTFs for AMnoise in the noise-exposed group were less band-pass compared to the controls, and in that sense the mild hearing loss could be considered as effectively reducing the central activation in the same way as a reduced sound pressure level. Effects of reduced central inhibition are visible in the broadening of frequency-tuning curves, and in the increased limiting rates for AMnoise.
Collapse
Affiliation(s)
- Naotaka Aizawa
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada; Department of Psychology, University of Calgary, Calgary, Alta., Canada
| | | |
Collapse
|
17
|
Aizawa N, Eggermont JJ. Effects of noise-induced hearing loss at young age on voice onset time and gap-in-noise representations in adult cat primary auditory cortex. J Assoc Res Otolaryngol 2006; 7:71-81. [PMID: 16408166 PMCID: PMC2504589 DOI: 10.1007/s10162-005-0026-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 12/09/2005] [Indexed: 11/30/2022] Open
Abstract
Here we show that mild hearing loss induced by noise exposure in early age causes a decrease in neural temporal resolution when measured in adulthood. We investigated the effect of this chronic hearing loss on the representation of a voice onset time (VOT) and a gap-duration continuum in primary auditory cortex (AI) in cats, which were exposed at the age of 6 weeks to a 120-dB SPL, 5-kHz 1/3 octave noise band for 2 h. The resulting hearing loss measured using auditory brainstem responses and cortical multiunit thresholds at 4-6 months of age was 20-40 dB between 1 and 32 kHz. Multiple single-unit activity was recorded in seven noise-exposed cats and nine control cats related to the presentation of a/ba/-/pa/ continuum in which VOT was varied in 5-ms step from 0 to 70 ms. We also obtained data for noise bursts with gaps, of duration equal to the VOT, embedded in noise 5 ms after the onset. Both stimuli were presented at 65 dB SPL. Minimum VOT and early-gap duration were defined as the lowest value in which an on-response, significantly above the spontaneous activity, to both the leading and trailing noise bursts or vowel was obtained. The mild chronic noise-induced hearing loss increased the minimum detectable VOT and gap duration by 10 ms. We also analyzed the maximum firing rate (FRmax) and the latency of the responses as a function of VOT and gap duration and found a significant reduction in the FRmax to the trailing noise burst for gap durations above 50 ms. This suggests that mild hearing loss acquired in early age may affect cortical temporal processing in adulthood.
Collapse
Affiliation(s)
- Naotaka Aizawa
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta Canada
- Department of Psychology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta Canada T2N 1N4
| | - Jos J. Eggermont
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta Canada
- Department of Psychology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta Canada T2N 1N4
| |
Collapse
|